
Knowing Your Roots:
Object-Oriented Binary Search Trees Revisited

Joel C. Adams
Department of Mathematics and Computer Science

Calvin College
Grand Rapids, MI 49546

adams@calvin.edu

Abstract

By applying object-oriented design to the definition of
a binary search tree, Berman and Duvall [1] designed a data
structure comprised of three classes: (i) an EmptyBST class
to model empty binary search trees, (ii) a NonEmptyBST
class to model non-empty binary search trees, and (iii) a
BST base class for common attributes of EmptyBST and
NonEmptyBST objects. That paper noted the problem of
inserting new values into such a structure: since insertions
occur at an EmptyBST object, an EmptyBST would have to
"turn into" a NonEmptyBST; a behavior beyond the
capabilities of the classes in most languages.

This paper presents three C++ solutions to the
insertion problem in their order of development. The first
solution uses a procedural programming technique, with the
second and third solutions shifting to a more object-oriented
approach. This chronology illustrates the author's ongoing
battle to shift from procedural to object-oriented thinking.

Introduction

The phrase, "You can't teach an old dog new tricks" is a
staple of American folk wisdom. One "new trick"Ñ
object-oriented design (OOD) Ñ promises to produce non-
redundant, easier to maintain code, and revolutionize the
software industry.

In a simplistic version of the "Booch method" of OOD
[2], the objects in a problem are equated with the nouns in
the problem description. If two or more such objects have
common attributes, an abstract base class is designed to
house those attributes. Classes for the original objects are
then derived from such base classes.

In a good O-O design, the resulting set of objects are
autonomous, meaning that each object contains all of the
methods it needs. This is sometimes referred to as the "I
can do it myself" principle of OOD Ñ objects should
perform their own operations, rather than be operated upon.

As Berman and Duvall have noted, when OOD is
applied to the binary search tree (BST), the result is very
different from the traditional implementation [1]. To
illustrate, here is an informal binary search tree definition:

A binary search tree is either an empty binary search
tree or it is a non-empty binary search tree. A non-empty
binary search tree consists of a value and two binary search
tree children left and right, such that value is greater than all
values in its left child, and is less than all values in its
right child.

Figure 1 shows the BST of a typical CS2 textbook:

4

6

5

2

¿

¿ ¿ ¿

¿

Figure 1: Traditional BST Implementation

node
binary
search
tree node

node

node

consisting of a pointer to a node, a structure containing a
value and two pointers to nodes. This is inconsistent with
the definition, which defines a binary search tree
recursively, as opposed to defining a recursive node, and
then defining the binary search tree as a pointer to a node.

By contrast, when OOD is applied to this definition,
the objects empty binary search tree and non-empty binary
search tree are identified. To store common attributes, a
BST base class can be defined, from which EmptyBST and
NonEmptyBST classes can be derived, as shown in Figure 2:

NonEmptyBST EmptyBST

BST

Figure 2: OOD BST Inheritance Hierarchy

Figure 3 shows the C++ syntax to define these classes:

class BST {
 public:
 BST() {}
 virtual ~BST() {}
 virtual bool contains(const Value &) const = 0;
 // ... other BST method prototypes
};

class EmptyBST : public BST {
 public:
 EmptyBST() {}
 ~EmptyBST() {}
 bool contains (const Value &) const;
 // ... other EmptyBST method prototypes
};

class NonEmptyBST : public BST {
 public:
 NonEmptyBST(const Value &, BST *, BST *);
 ~NonEmptyBST();
 bool contains(const Value &) const;
 // ... other NonEmptyBST method prototypes
 private:
 Value itsValue;
 BST * itsLeftChild,
 * itsRightChild;
};

Figure 3: C++ Inheritance Hierarchy

As Berman and Duvall note, OOD can greatly simply the
binary search tree operations, because the functionality is
partitioned between two different objects. To illustrate,
Figure 4 shows the implementations of the contains()
methods for the two derived classes:

bool EmptyBST::contains(const Value & val) const
{
 return false;
}

bool NonEmptyBST::contains(const Value & val) const
{
 if (val == itsValue)
 return true;
 else if (val < itsValue)
 return itsLeftChild->contains(val);
 else
 return itsRightChild->contains(val);

}
Figure 4: contains() Methods

For polymorphic methods like contains(), the function-
ality is divided across the EmptyBST and NonEmptyBST
classes. As a result, the special tests for NULL pointers that
characterize the traditional approach disappear in the object-
oriented binary search tree.

The Problem

Unfortunately, the insert() and delete() operations are
somewhat more difficult, as Berman and Duvall note. To
illustrate, suppose that a program has executed

BST * myBST = new EmptyBST;

producing the situation shown in Figure 5:

myBST
EmptyBST

Figure 5: An Empty BST

Suppose the program then wants to insert some newItem
into the tree using a polymorphic insert() method:

myBST->insert(newItem);

Because myBST is pointing at an EmptyBST object, the
method EmptyBST::insert() is being invoked. To
accomplish its task, this method must somehow replace its
EmptyBST with a new NonEmptyBST containing newItem,
as shown in Figure 6:

myBST

EmptyBST

Figure 6: After Inserting NewItem

EmptyBST

NewItem

Berman and Duvall note that this could be accomplished if
one object were able to transform itself into another object
(i.e., an EmptyBST into a NonEmptyBST). Since C++
classes do not provide this capability, they present two
alternative solutions.

One alternative they present is to consolidate the two
classes into one, with a boolean flag that when set, treats
the class as a NonEmptyBST, and when cleared treats the
class as an EmptyBST. By eliminating the polymorphism,
this approach requires its methods to test the flag to
distinguish which behavior to perform. It is thus a step
away from the O-O approach.

Their second alternative is a technique adapted from
Object-Pascal, which maintains the O-O design, but
modifies the insert() method to return the address of the
new NonEmptyBST. This address can then be assigned to
the pointer making the call, as in:

myBST = myBST->insert(NewItem);

As Berman and Duvall note, this approach seems unnatural
and requires some getting used to.

As it turns out, neither the two alternatives nor the
exotic capability of class transformation is needed to solve
this problem. In a nutshell, what is needed is this: the
method EmptyBST::insert() must be able to alter the
pointer by which it was called.

In the remainder of this paper, we present three different
approaches that use this observation, each an improvement
on its predecessor.

Approach 1: Passing the Pointer.

Our first approach began with this thought: If insert()
needs to be able to alter the pointer by which it was called,,
why not pass that pointer to insert() via a reference
parameter? Figure 7 shows the resulting pair of methods:

void EmptyBST::insert(const Value & val,
 BST * & viaPtr)
{
 BST * tmpPtr = new EmptyBST;
 viaPtr = new NonEmptyBST(val, viaPtr, tmpPtr);
}

void NonEmptyBST::insert(const Value & val,
 BST * & viaPtr)
{
 if (val < itsValue)
 itsLeftChild->insert(val, itsLeftChild);
 else if (it > itsItem)
 itsRightChild->insert(val, itsRightChild);
 else
 cerr << val << " is already in the tree!";
}

 Figure 7: Insert by Passing the Pointer

Applying this idea retains the benefits of polymorphism for
the insert() method, since calls like:

 myBST->insert(4, myBST);
 myBST->insert(2, myBST);
 myBST->insert(6, myBST);
 myBST->insert(5, myBST);

can be used to build an O-O binary search tree equivalent to
that shown in Figure 1. Note that the first insertion is a
call to EmptyBST::insert(), but the other calls are to
NonEmptyBST::insert(), which recursively descends the
tree to the appropriate EmptyBST, where a (polymorphic)
call to EmptyBST::insert() performs the insertion.

This approach works, but it seems ungainly, especially
since the passed pointer is used only in the very first call.
Aesthetically, this approach seems only marginally better
than the "insert using an assignment" approach.

Worse yet, this approach reflects a procedural mindset:
When a procedure needs a piece of data, that data is passed
to the procedure via a parameter. By contrast, in the O-O
approach, such data should be stored within the object.
Recognition of this led to our second approach.

Approach 2: "I Can Do It Myself"

Dissatisfaction with our first approach led us to re-evaluate
our class hierarchy's design. The "I can do it myself" world
of OOD suggests that instead of passing the EmptyBST
methods a parameter containing the pointer by which it is
attached to the tree, an EmptyBST should store that
information. Figure 8 illustrates this idea:

myBST
EmptyBST

Figure 8: Storing the Pointer Address

We call the pointer by which an EmptyBST or a
NonEmptyBST is attached to the tree its root pointer, so in
Figure 8, myBST is the root pointer of the EmptyBST. If the
value 4 is inserted, then myBST will be the root pointer of
the NonEmptyBST containing 4, and myBST->itsLeftChild
and myBST->itsRightChild will be the root pointers of
two EmptyBSTs, as shown in Figure 9:

myBST

EmptyBST

Figure 9: Storing Root Pointers

EmptyBST

4

As it happens, both EmptyBST and NonEmptyBST methods
must access their root pointers. Since methods in both
classes require this information, the root pointer should be
stored in and inherited from the base class, BST.

To provide this capability, the BST base class stores the
address of the root pointer, and then provides methods for
using it (two for the data member storing its address, and
two for the root pointer itself), as shown in Figure 10:

class BST {
 public:
 BST(BST * *)
 virtual ~BST() {}
 virtual bool contains(const Value &) const = 0;
 // ... other BST method prototypes
 protected:
 void SetRootPtrAddress(BST * *);
 BST * GetRootPtrAddress() const;
 void SetRootPtr(BST *);
 BST * GetRootPtr() const;
 private:
 BST * * itsRootPtrAddress;
};

Figure 10: The ModiÞed BST Base Class

The definitions of the class constructors must then be
modified to initialize the root pointer, as Figure 11 shows:

Figure 11: Constructor ModiÞcations

BST::BST(BST * * rootPtrAddress)
{
 itsRootPtrAddress = rootPtrAddress;
}

EmptyBST::EmptyBST(BST * * rootPtrAddress)
 : BST(rootPtrAddress)
{}

// ... NonEmptyBST constructor omitted

Given access to the root pointer, the insert() methods can
be encoded without pointer parameters, as Figure 12 shows:

void EmptyBST::insert(const Value & val)
{
 BST * * rPtrAddr = GetRootPtrAddress();
 NonEmptyBST * tmpPtr =
 new NonEmptyBST(val, this, NULL, rPtrAddr);
 SetRootPtr(tmpPtr);
 SetRootPtrAddress(&(tmpPtr->itsLeftChild));
 tmpPtr->itsRightChild =
 new EmptyBST(&(tmpPtr->itsRightChild));
}

void NonEmptyBST::insert(const Value & val)
{
 if (val < itsValue)
 itsLeftChild->insert(val);
 else if (it > itsValue)
 itsRightChild->insert(val);
 else
 cerr << val << " is already in the tree!";
}

Figure 12: Insert Ñ I Can Do It Myself

With these methods, a program can now create the empty
binary search tree of Figure 8 by executing:

 myBST = new EmptyBST(&myBST);

and then perform a series of insertions quite cleanly:

 myBST->insert(4);
 myBST->insert(2);
 myBST->insert(6);
 myBST->insert(5);

Thus, this approach requires passing the address of the root
pointer once, when the tree is created. Since methods
require this information, the information must be passed at
some point, and doing so once, when the object is created,
seems like a minimal imposition. Once created, an object
"knows" its root pointer, and its methods can make use of
this "knowledge".

The primary drawback of this approach is that the user
must remember to pass the address of the root pointer,
which is both error-prone and inconvenient. Thinking
about how to eliminate this drawback led to our third
approach, which is a simple refinement of approach 2.

Approach 3: Using References

Our final approach resulted after some research into the
capabilities of C++ references. In terms of its behavior, a
C++ reference variable is essentially a constant pointer
variable that is automatically dereferenced. Moreover, when
the address-of operator (&) is applied to a reference variable,
the result is the address of the object being pointed at [3].
For example, if a function F() has a reference parameter p:

 void F(Type & p);

and is called with argument a:

 F(a);

then within the definition of F(), the expression

 &p

yields the address of argument a. This allows us to
eliminate the drawback of our second approach. Figure 13
presents the constructors using this approach:

EmptyBST::EmptyBST(BST * & rootPtr)
 : BST (& rootPtr)
{}

Figure 13: Constructing with References

NonEmptyBST::NonEmptyBST(const Value & val,
 BST * left, BST * right,
 BST * & rootPtr)
 : BST(& rootPtr)
{
 itsValue = val;
 itsLeftChild = left;
 itsRightChild = right;
}

None of the other methods need to be modified Ñ we
simply add these constructors, after which a statement like

 myBST = new EmptyBST(myBST);

can be used to build the empty binary search tree shown in
Figure 8, eliminating the requirement that the caller supply
the address-of operator. Following this, the insertions

 myBST->insert(4);
 myBST->insert(2);

produce a binary search tree like that in Figure 14:

Figure 14: An O-O BST

myBST

EmptyBST

4

EmptyBST EmptyBST

2

By passing a reference to the root pointer when the BST is
created, the resulting implementation retains the "I can do it
myself" flavor of our second approach, while eliminating
its drawback. The result is a binary search tree
implementation that is consistent with the traditional
definition, and that contains no redundant code.

Miscellany

To keep this paper short and (relatively) simple, we have
ignored the delete() operation in our discussion. Because
all of the work must be done by NonEmptyBST::delete(),
this operation is more complicated than insert().
However, it is not a difficult method to implement, and
doing so is a useful exercise.

We have also ignored the issue of the relative efficiency
of the O-O implementation compared to the traditional
implementation, since that was discussed in the original
(Berman and Duvall) paper.

The complete source code (including the delete()
methods) for each of the three approaches is available on the
World-Wide-Web at

 http://www.calvin.edu/~adams/OO-BST

CS2 instructors in search of projects may freely download
any of the three approaches and delete whatever portions
they wish their students to implement. Providing students
with a working class and having them extend its
functionality has avoids overwhelming students, and it
provides experience maintaining code written by others,
reinforcing the importance of thorough documentation.

A simple honors project is to provide students with a
copy of [3] and the source code to approach 2, and tell them
to make whatever modifications are needed in order for
approach 3 to work. Rather than having to write lots of
code, this project requires students to have an in-depth
understanding of pointers and references (in greater depth
than is available in the typical textbook), and then use that
understanding to write a few lines of code. More
importantly, the project provides a simple vehicle to teach
students to find information for themselves and learn on
their own, a worthy goal for any honors project.

In Closing

We have presented three approaches that solve the problem
of inserting a value into an O-O binary search tree. The
approaches range from a clumsy initial effort to a final
effort that more fully embodies O-O principles.

The chronology of our three approaches provides an
interesting insight into the difficulty of making the
procedural-to-O-O paradigm shift. After learning software
design in the traditional top-down modular approach,
virtually all of the author's programming for the past 5
years has been O-O programming in C++. Yet when faced
with a new problem, the first solution that occurred to him
reflected a procedural approach (thankfully, one whose
deficiencies led him to the O-O approach). This leaves the
author feeling like "an old dog", and wondering

How long does it take to learn this "new trick"?

References

1. A. Michael Berman and Robert C. Duvall, Thinking
About Binary Trees In An Object-Oriented World,
Proceedings of the 27th SIGCSE Technical Symposium on
Computer Science Education, 27(1): 185-189, February,
1996.

2. Grady Booch, Object Oriented Design, Benjamin/
Cummings, 1991.

3. Bjarne Stroustrup, The C++ Programming Language,
Addison-Wesley, 1992, pp. 540.

