
Early Adopter: Integration of Parallel Topics
in the Undergraduate Curriculum at Calvin College

Joel C. Adams

Department of Computer Science, Calvin College,
Grand Rapids, MI 49546 USA

adams@calvin.edu

Abstract - Since 1989, all Calvin College computer science
students have learned about concurrency constructs and
distributed systems, and they have had the option of learning
about parallelism since 1997. In 2006, manufacturers began
releasing processors with multiple cores instead of faster clock
speeds, making knowledge of shared-memory parallelism a
necessity for all computer science students. In 2008, the
department began integrating shared-memory parallel topics into
its Data Structures course (aka CS2) and the Operating Systems
and Networking course. Thanks to the NSF/IEEE TCCP 2011
Early Adopters Program, additional parallel topics are now being
integrated into the Algorithms and Data Structures course, the
Intro to Computer Architecture course, the Programming Language
Concepts course, and the High Performance Computing course.
This work provides an overview of the department’s curriculum,
and the precise courses in which specific parallel topics and
technologies are covered.

I. BACKGROUND

Calvin College is a 4-year comprehensive liberal arts college
of about 4,000 undergraduate students located in Grand
Rapids, Michigan. In addition to strong liberal arts programs,
the college offers several professional programs, including
ABET-accredited programs in Computer Science (BCS) and
Engineering (BSE). Its Department of Computer Science (CS)
offers degrees in computer science and information systems,
has roughly 100 students and seven full-time professors. All
students complete a large general education requirement and at
least one major program.

In semester 1, computer science majors take Introduction to
Computing, a CS1 course taught in Java; and Calculus I. In
semester 2, they take Data Structures, a CS2 course taught in
C++; and Calculus II. In semester 3, they take Data Structures
and Algorithms, a CS3 course in which students can use either
Java or C++; Intro to Computer Architecture; and Discrete
Mathematics I. In semester 4, they take Programming
Language Concepts, and Discrete Mathematics II. In semester
5, they take Software Engineering; and the first of their
advanced electives. In semester 6, they take Operating
Systems and Networking; Statistics; and perhaps another
advanced elective. In semester 7, they choose another
advanced elective; and begin their Senior Practicum, which
may be a 2-semester senior project or a 1-semester internship.
In their final semester, they complete their final advanced
elective; their Senior Practicum; and a Perspectives on
Computing capstone course dealing with social and ethical
issues.

II. CONCURRENT/DISTRIBUTED COVERAGE AT CALVIN

Calvin’s CS department has been teaching undergraduates
about concurrent and distributed computing for many years.
Department chair Joel Adams’ dissertation area was distributed
systems, and as the first PhD computer scientist at Calvin, he
influenced the early CS curriculum development.

As a result, Calvin’s Programming Language Concepts
course (CS 214) has since 1989 covered the use of tasks,
semaphores, locks, condition variables, and monitors; threads
were added in 1998. Likewise, Calvin’s Operating Systems and
Networking course (CS 232) has since 1989 covered the
implementation of processes, threads, semaphores, locks,
condition variables, and monitors; plus distributed systems
topics like temporal logic, global clocks, consensus, and so on.

Both of these courses have been updated regularly; for
example, CS 232 was updated with coverage of TCP/IP
networking and client-server systems in 1996 and POSIX
multithreading in 1998. In each case, topics were prioritized
and coverage of a lower-priority topic was reduced.

Both of these courses are part of the department’s core
curriculum (i.e., all CS majors must take these courses), so all
of Calvin’s CS majors have learned about concurrency,
multithreading, and distributed systems for many years.

III. PARALLEL COVERAGE AT CALVIN

In the summer of 1996, Dr. Adams attended an NSF parallel
computing workshop at Colgate University, where he learned
about different aspects of parallelism, including the message
passing interface (MPI). In 1997, he offered an advanced
elective course High Performance Computing (CS 374, aka
HPC), which has since then been offered every other year. The
course initially featured coverage of multiprocessor
architectures, parallel algorithms, scalability, Amdahl’s and
Gustafson’s Laws, with hands-on lab and homework exercises
using Parallaxis [6] in Modula-2 and MPI in C/C++.

Over the years, coverage of Parallaxis was gradually
eliminated to make room for other topics, including Beowulf
clusters (1999), grids (2001), OpenMP (2003), and Google’s
MapReduce technology (2009).

Initially, students worked their MPI exercises on a network
of workstations (NOW), but timing results were unreliable.
To provide reliable timing, Dr. Adams and his students have
built a series of Beowulf clusters, including MBH’99 [1],

Ohm.calvin.edu [2], Sleipnir, Microwulf [3,4], and
Dahl.calvin.edu [5]. Some of these clusters were built using
grants from the NSF Major Research Instrumentation (MRI)
program; others were built using internal funds.

Calvin’s CS majors have thus had the option of learning
about parallelism since 1997.

IV. THE MULTICORE CHALLENGE

In 2006, manufacturers began releasing multicore processors
instead of processors with faster clock speeds. With these
changes, it became apparent that all of our CS majors needed
to learn how to achieve speedup through parallelism
(especially shared-memory parallelism), not just those
choosing our HPC elective. Moreover, the radically different
thought process needed to design parallel software made it
apparent to us that this material should be integrated early and
at appropriate points throughout our curriculum, to prevent our
students from becoming locked into a sequential mindset.

We decided to begin by encouraging faculty members to
start adding parallel content to their courses. This brought
about two changes:
• 2008: In our Intro to Data Structures course (core, year 1,

semester 2), we added: (i) a lab exercise where students
use OpenMP threads to solve embarrassingly parallel
problems (matrix addition and transpose), and time their
computations using differing numbers of cores; and (ii)
lectures on simple race conditions, and how algorithms
such as linear search and merge sort can be parallelized.

• 2009: In our Operating Systems and Networking course
(core, year 3, semester 2), we added: (i) approaches to
scheduling on systems with multicore processors; and (ii)
a comparison of the POSIX and OpenMP libraries, in
terms of thread creation, synchronization constructs, etc.

These changes were sufficient to provide all of our students
with a minimal exposure to shared-memory parallelism.
However, Dr. Adams taught both of these courses; other
faculty members had not yet integrated parallel topics into their
courses, mainly because their textbooks were not doing so.

V. GOING FURTHER

In 2010, the NSF/IEEE TCCP group began their Early
Adopter Program. Dr. Adams applied for and received one of
these grants on behalf of Calvin’s CS department, to provide
financial incentives for faculty to integrate more parallelism
into their courses. Thanks to this funding, the following
changes are occurring during 2011:
• In our Algorithms and Data Structures course (core, year

2, semester 1), we are adding coverage of parallel
algorithm design (e.g., data vs task decomposition),
specific parallel algorithms (e.g., parallel maximum),
distributed algorithms (e.g., graphs), parallel speedup,
parallel efficiency, and asymptotic analysis.

• In our Intro to Computer Architecture course (core, year 2,
semester 1), we are adding coverage of multicore

processors and their implications for main memory,
caching, bus bandwidth, memory controllers, etc.

• In our Programming Language Constructs course (core,
year 2, semester 2), we have expanded our coverage of
shared-memory parallelism (OpenMP, Ada multitasking,
synchronization mechanisms, race conditions) and added
an introduction to distributed memory parallelism (MPI).
We have also added a lab exercise comparing
synchronization mechanisms (OpenMP’s reduction, Ada’s
entry procedures, and Ruby threads’ join method); in
which students measure scalability by varying the problem
size and the number of threads/cores being used.

• In our High Performance Computing course (elective, year
3 | 4, semester 1), we are adding a module and lab exercise
to introduce OpenCL/GPGPU computing, to supplement
our coverage of MPI, OpenMP, and MapReduce.

By spreading shared-memory parallel topics throughout the
undergraduate core curriculum, our students will be exposed to
parallelism early and frequently. We believe that by
combining conceptual foundations with hands-on experiences,
our students will gain the knowledge and experience they need
to take advantage of today’s multicore processors and
tomorrow’s manycore processors.

VI. DISCUSSION

Even in a relatively small department like ours, it can be
difficult for busy faculty to change what they teach. We are
grateful to the NSF/IEEE TCCP Early Adopter Program for
providing funding we can use as financial incentives to drive
such change. We anticipate that as faculty members become
more familiar with parallelism and gain confidence in it, they
will naturally increase their use of it in the courses they teach.

VII.

ACKNOWLEDGMENT

Calvin’s Department of Computer Science thanks the
NSF/IEEE TCCP group for making this work possible.

REFERENCES
[1] J. Adams, W. D. Laverell and M. Ryken, “MBH'99: A Beowulf Cluster

Capstone Project”, 14th Annual Midwest Computer Conference,
Whitewater, WI, March 2000.

[2] J. Adams and D. Vos, “Small College Supercomputing: Building a
Beowulf Cluster at a Comprehensive College”, 33rd SIGCSE Technical
Symposium on Computer Science Education, Covington, KY, February
2002, pp. 411-415.

[3] J. Adams and T. Brom, “Microwulf: A Beowulf Cluster For Every Desk”,
39th SIGCSE Technical Symposium on Computer Science Education,
Portland, OR, March 2008, pp. 121-125.

[4] J. Adams, T. Brom*, and J. Layton, “Microwulf: Breaking the
$100/GFLOP Barrier, Cluster Monkey, Aug 2007, Online:
 http://www.clustermonkey.net/content/view/211/1/, accessed April 2011.

[5] J. Adams, K. Hoogeboom, J. Walz, “A Cluster for CS Education in the
Multicore Era”, 42nd SIGCSE Technical Symposium on Computer Science
Education, Dallas, TX, March 2011, in press.

[6] T. Braunl, “Parallaxis-III: A Structured Data-Parallel Language”, Online:
http://robotics.ee.uwa.edu.au/parallaxis/, accessed April 2011.

