
MBHÕ99: A Beowulf Cluster Capstone Project

Joel C. Adams W. David Laverell Mark A. Ryken
Department of Computer Science

Calvin College
3201 Burton SE

Grand Rapids, MI 49546
{adams, lave}@calvin.edu

Ameritech IMS
Network Control Center

25 West Randolph Suite 28D
Chicago, IL 60606

mryken@ameritech.net

Abstract

The high costs of commercial parallel computing hardware and software place them

beyond the reach of the Computer Science departments of many colleges and universities.

By contrast, a Beowulf cluster is a dedicated system of commodity off-the-shelf PCs

running free, open-source software and connected by inexpensive ethernet. A Beowulf

cluster thus provides an inexpensive way to build a multiprocessor for parallel computing

at a fraction of the cost of a commercial machine.

This paper is an overview of our experience building MBHÕ99, an eight-node

hypercube-topology Beowulf cluster of cast-off 486 machines, running Linux and the

Message Passing Interface (MPI), and connected with 100Mbps ethernet. Building such a

cluster requires the integration and application of concepts from operating systems,

networking, parallel computing, and computer architecture, making it an excellent subject

for a capstone project. We discuss the decisions we made during the design and

implementation of MBHÕ99, and how we will do things differently next time.

The total cost of MBHÕ99 was $6,100 in January 1999, all of which went for

networking hardware. With recent price drops in 100 Mbps ethernet equipment, a similar

system today can be built for roughly $3,000.

1. Introduction

The adage

ÒMany hands make light workÓ

captures the spirit behind parallel computing. For many computationally-intensive tasks,

the task can be performed more quickly if the work is spread across multiple processors

than if it must be done by a single processor. Because the work is done by multiple

processors acting in parallel, such computation has come to be known as parallel or high

performance computing (HPC). We will use these two phrases interchangeably.

To educate their students about parallel computing many Computer Science

departments offer one or more courses on the topic. Such courses can be (and frequently

are) taught in a Òhands offÓ or theoretical fashion. However if students are to experience

and appreciate the power of parallel execution, such courses should involve actual parallel

hardware with which students can experiment and run their programs.

1.1 Problems of Commercial HPC Systems

Unfortunately, commercial HPC hardware and software are very expensive, costing from

hundreds of thousands to millions of dollars. When combined with the fiscal budget-

realities of many Computer Science departments, these costs have prevented many

students from directly experiencing the benefits of parallel computation.

Support is also an issue with commercial HPC hardware and software. As a result

of the high research and development costs and limited demand, the attrition rate among

HPC companies is extremely high. As a result, a HPC hardware or software vendor may

not exist a year after your purchase, leaving one stranded in terms of support.

1.2 A Solution: Beowulf Clusters

In 1994, Thomas Sterling and Don Becker of NASAÕs Goddard Space Flight Center found

a solution to both of the previously-described problems with commercial HPC systems.

They solved the ÒHPC systems are expensiveÓ problem by connecting sixteen 486-DX4

PCs with Ethernet and installing free software (Linux, MPI, PVM) to make the PCs

behave as a multiprocessor. The resulting multiprocessor provided significant speedup at

a small fraction of the price of a supercomputer. They named their system Beowulf [1].

The terms Beowulf cluster and Beowulf-class multiprocessor have since been coined to

classify the many similar systems that have been built since the original Beowulf [9].

Beowulf clusters also solve the ÒHPC system support problem.Ó Hardware support

becomes a non-issue because every piece of a Beowulf is a commodity off-the-shelf item

that Ð upon failure Ð can be swapped with another equivalent item. Software support is

also a non-issue because all of the Beowulf software (Linux, MPI, PVM, etc.) is open-

source software. This allows the researchers to Òroll their ownÓ software as necessary.

Thus, a Beowulf cluster empowers a researcher to provide their own hardware and

software support, which some (many?) researchers seem to prefer to being dependent on a

commercial HPC vendor [7].

Following our 1997 Parallel Computing course, our third author decided to build a

Beowulf cluster as his senior project during the 1998-99 academic year. With mentoring

and minor help from his professors (the first two authors), his cluster was a success. This

paper describes our experiences.

2. DESIGN

Building a Beowulf cluster consists of these steps:

1. Acquiring the PCs that will make up the cluster and assembling them, if necessary;

2. Acquiring networking hardware (a hub or switch, cabling, etc.) and using it to connect

the PCs;

3. Installing and configuring Linux on each PC;

4. Installing parallel programming software (e.g., MPI, PVM) on each PC; and

5. Using the resulting system to execute parallel programs.

As Beowulf novices, we decided to begin by studying existing clusters, to see how we

should proceed in designing and building ours.

2.1 Existing Clusters

An on-line list of existing Beowulf clusters is given at [9]. Because the clusters listed

there were built at different times, they differ in their ages, their CPUs, their memory

capacities, and so on. There is much to be learned by studying these other systems, and

so we spent a significant amount of time poring over their details.

We learned that there is near-universal agreement that the computational

bottleneck of Beowulf clusters is the network by which its PCs communicate. 10Mbps

ethernet is generally too slow for all but the most coarse-grained parallelism, but

1000Mbps ethernet and ATM are seen as too expensive, so fast (100Mbps) ethernet has

been the fabric of choice (at least until the faster technologies drop in price).

For simplicity and low cost, the vast majority of Beowulf clusters use a star

topology, with all communication routed through a central switch, as shown in Figure 1:

Figure 1

A Star-Topology Cluster

We also learned that if all communication is routed through a central hub or switch, then

that switch can become the computational bottleneck. The problem is that as parallel

communication increases, the switch can become saturated, causing delays in message

transmissions. The result is an increase in the average communication latency (the time

to transmit a bit from one machine to another) for the entire system.

Reducing communication latency has led to an interesting variety of network

topologies, including rings, trees, and many hybrid structures. For example, the LoBoS

cluster [3] at the National Institute of Health and Wulfpack cluster at Johns Hopkins

Medical School [6] each use a ring-star hybrid topology similar to that shown in Figure 2:

Figure 2

A Ring-Star Hybrid Cluster

Such a topology provides direct links between each node and its two nearest neighbors,

and switched (1-hop) links between each node and its non-neighboring nodes. By

allowing neighboring nodes to communicate directly, this topology reduces message

traffic through the switch, and thus reduces the systemÕs average communication latency.

switch

switch

2.2 Our Cluster

After much study, we decided to use a hypercube-star hybrid topology along the lines of

Loki [10], a cluster built by Michael Warren of Los Alamos National Laboratories. In

1996, Loki was able to achieve 1.2 (measured) Gflops and cost $63,000 to build. Just a

year later it could have been built for $28,000, and today its price would be much less.

In an N-dimensional hypercube, each of the 2N machines has a direct link to each

of its N nearest neighboring machines, and an indirect link to all other machines. Figure 3

illustrates this with a 3-dimensional hypercube:

Figure 3

A 3-Dimensional Hypercube

Besides providing cost-effective, efficient communication, parallel algorithms based on

other topologies can be mapped onto a hypercube. Figure 4 shows how a ring can be

mapped onto the 3-D hypercube of Figure 3:

Figure 4

A Ring Mapped Onto a 3-Dimensional Hypercube

Loki uses a hypecube-star hybrid topology, meaning it uses a switch augmented with

direct links between each node and its hypercube neighbors. Neighboring nodes thus have

direct links, while non-neighboring nodes have 1-hop links via the switch. This topology

has lower communication latency than a ring-star hybrid, because each PC is directly

connected to N other PCs, rather than just two, as shown in Figure 5:

Figure 5

Our Hypercube-Star Hybrid Cluster

2.3 Software Decisions

Operating System. Virtually every Beowulf cluster uses Linux as its underlying operating

system, for the following reasons:

1. It is free.

2. It is stable, allowing computations to run for weeks or months without rebooting.

3. It is open-source software, allowing its users to make changes as necessary.

Parallel Processing Support. For parallel programming, we chose the Message Passing

Interface (MPI) [5] over the Parallel Virtual Machine (PVM) [4] for these reasons:

1. PVMÕs heterogeneous hardware interoperability adds unnecessary overhead in our

homogeneous system.

2. PVMÕs language interoperability adds unnecessary overhead for our system.

The resulting system came to be known as MBHÕ99, which at various times of the year

stood for Miniscule Budget Hypercube Õ99, MarkÕs Beowulf Hypercube Õ99, and MarkÕs

Big Headache Õ99 (Mark being our student author).

switch

3. IMPLEMENTATION

3.1 Hardware Configuration

Thanks to an in-house grant, we had a project budget of just over $6,000. Unfortunately, a

ÒLoki-likeÓ cluster was not yet that inexpensive. After making inquiries, we learned that

a dozen 486 machines in various states of repair were available for free as a result of a

campus-wide upgrade to the Pentium platform. These machines had different ethernet

cards, amounts of memory, disk space, and so on. By cannibalizing some of the twelve

machines, we were able to construct eight machines that were more or less the same. The

result was that each 486 had at least 16 Mb of RAM, and at least 400 Mb of disk space.

Only one machine had a CD-ROM drive.

Thanks to these machines being free, we were able to devote our entire budget to

our clusterÕs communication network: 32 3Com ISA 3C515 10/100 Mbps cards at $160

each, a Samsung SmartEther SS6208 10/100 Mbps switch for $800, and miscellaneous

other hardware, for a total cost of $6100. These components have since dropped in price

by roughly 50%.

3.2 OS Configuration

We chose Redhat Linux as the operating system for our cluster, primarily for its ease of

installation. We installed the OS on the one machine that had a CD-ROM drive, and then

used it to do a network-install on each of the other machines. Redhat 5.1 was the newest

version at the time of the project. Subsequent releases of Redhat have supposedly fixed

some of the problems we describe below.

Unfortunately, network installations through our ÒLinux compatibleÓ 3Com

100Mbps cards succeeded on a machine or two, but failed on most. By replacing the

3Com card with a spare NE2000 compatible (10 Mbps) ethernet card, network installation

would proceed smoothly. We ended up moving this same NE2000 card from machine to

machine in order to get Linux installed onto each machine.

Once the operating system was installed on each machine, the four 3Com cards

had to be installed. This was also easier to say than do Ð having multiple ethernet cards in

the same machine caused a variety of problems.

The first problem was that our 3Com 100Mbps cards were MS-Windows 9x Òplug-

and-playÓ cards. Unfortunately, Òplug-and-playÓ capabilities must be turned off for

Linux, and these cards have no hardware or software switch for turning off those

capabilities. As a workaround, we used a Linux isapnp utility in the systemÕs

initialization scripts to read each cardÕs information from a configuration file whenever the

system is booted. (To get the cardÕs I/O port, IRQ, and DMA channel information for the

configuration file, a second utility named pnpdump was used.) The correct Linux module

was then loaded to control the card.

The next problem was that each time the system booted, the four cards might be

set up in a different order, causing conflicts with their hardware settings. To fix this

problem, we created a script that, once each card was set up, remapped their hardware

addresses to their IP addresses.

This same script was also used to solve our next problem: setting up our routing

tables to make neighboring nodes in the hypercube communicate directly. On each PC,

this script sets up the tables so that (i) a message to a neighboring node is routed over the

card linked to that neighbor and (ii) a message to a non-neighboring node is routed to the

card linked to our switch. Writing this script was time-consuming, but not difficult.

3.3 MPI Configuration

Installation and configuration of MPI went smoothly. However, upon trying to run MPI,

we hit our final problem. Since our cluster had just eight nodes with static IP addresses,

we tried to map host names to IP addresses solely via the /etc/hosts file on each machine.

However, this was insufficient; to let the PCs communicate we had to enable and run

domain name service. That is, to actually map our PCÕs names to IP addresses, we had to

install the bind utility, and then run named, the domain name service daemon. To avoid

having name resolution consume network bandwidth, these were installed on each

machine. With each machine acting as its own name-server, MPI then worked correctly.

4. OBSERVATIONS

4.1 Topology Costs

Each of the M machines in a hypercube-star hybrid has log2(M) direct links to its

hypercube neighbors, plus one link to the switch. Each machine in a 3-D hypercube-star

hybrid cluster has 4 links (3 direct, 1 switched); each machine in a 4-D cluster has 5 links

(4 direct, 1 switched), and so on. M must be a power of two, and each machine in the

cluster needs another link each time M doubles. The clusterÕs per-node bandwidth and

cost thus grow logarithmically with M.

For comparison purposes, each of the M machines in a completely connected

cluster has M-1 direct links to each of the other machines in the cluster. If M increases by

one, each machine must gain another link. The clusterÕs per-node cost and bandwidth

thus grow linearly with M.

By contrast, each of the M machines in a ring-star hybrid cluster has 2 direct links

(to neighbors in the ring), plus 1 to the switch. A machine never needs more links,

regardless of how M changes. A clusterÕs per-node cost and bandwidth are thus constant,

and independent of M.

The hypercube-star hybrid thus appears to offer a Òmiddle-of-the-roadÓ cost, in

return for Òmiddle-of-the-roadÓ performance. Figure 6 shows the costs of each topology

in terms of network ports:

Network
Ports

Completely
Connected

Hypercube-Star
Hybrid

Ring-Star
Hybrid

Star

F(8) 56 32 24 8

F(M) M ´ (M-1) M ´ (log2 (M)+1)) M ´ 3 M

O(F(M)) O(M2) O(M log2 (M)) O(M) O(M)

Figure 6

Topology Cost (in Network Ports)

While these costs for an 8-machine cluster are not that far apart, the differing costs quickly

manifest themselves as M increases. Figure 7 shows the cost for each topology in terms of

network ports for 16, 32, and 64-machine clusters:

Network
Ports

Completely
Connected

Hypercube-Star
Hybrid

Ring-Star
Hybrid

Star

M=16 240 80 48 16

M=32 992 192 96 32

M=64 4032 448 192 64

Figure 7

Network Ports Required (as M Grows)

Even with dropping card prices, the cost of network ports can quickly strain a tight budget

even if one is using the ring-star hybrid topology. This expense is one reason many

Beowulf-builders choose the star or ring-star topologies.

4.2 Topology Scalability

A less obvious cost of choosing the hypercube topology for a Beowulf cluster is the

relative difficulty of adding new nodes to the cluster compared to the star or ring-star

hybrid topologies. We call this problem the scalability problem.

To surpass the performance of a desktop, a cluster of cast-off PCs must consist of

many, many machines. Also, being able to add cast-off PCs to oneÕs cluster is an

attractive, inexpensive way to increase a clusterÕs processing power.

This approach is being used by the Stone SouperComputer [8], a Beowulf cluster

at Oak Ridge National Laboratories. This cluster consists entirely of cast-off machines

(currently 128 of them). The cluster grows as people donate their old machines, making

scalability very important. To solve the scalability problem, the Stone SouperComputer

uses the standard 10 Mbps ethernet bus topology shown in Figure 8:

Figure 8

Bus Topology (ORNLÕs Stone SouperComputer)

With this topology, each machine in the cluster requires just one 10 Mbps port. If each

cast-off already has such a card, the per-node hardware cost is $0. Of course, its

bandwidth is quite limited, but such a cluster is fine for highly coarse-grained parallelism.

Compared to the Stone SouperComputer, our cluster is not easy to expand. To add

machines to a hypercube, its dimension must increase from N to N+1 (e.g., from 8

machines to 16, 16 to 32, etc.), which adds one to the number of network ports needed by

each machine. If 1-port network cards (the least expensive) are being used, then an

additional card must be installed on each machine. Beyond the physical effort of opening

. . .

the cases to install the new card on M machines, each machineÕs OS configuration must

also be modified, as described in 3.2.

The limited number of card slots on a PC motherboard (usually six or less)

compounds the problem. Other subsystems (e.g., video) also use these slots, so that if a

hypercube-star hybrid cluster has five-slot motherboards, a 3 is the highest dimension that

hypercube can achieve. (The video card and switched-link network card each use one slot,

leaving just three for the direct links.)

This problem can be addressed by using multi-port (e.g., 2-port or 4-port) network

cards. However, such cards cost more per port than 1-port cards, so this has budget

implications, and each machineÕs system must still be reconfigured to use the new port.

The ring-star hybrid topology represents a nice compromise between ORNLÕs easy-to-

scale/low-bandwidth Stone Souper-Computer and a harder-to-scale/high-bandwidth

hypercube-star hybrid. As seen in Figure 2, each machine in a ring-star hybrid requires

three network ports: two for direct links and one for the switched link, regardless of how

many machines are in the cluster. This becomes a real benefit when one wishes to add

new machines to the cluster, since all that is required to integrate the new machine is:

1. Ensure that the new machine has three network cards;

2. Create an opening in the ring by disconnecting machine M-1 from machine 0;

3. Connect machine 0 to the new machine, and the new machine to machine M-1;

4. Connect the new machine to the switch; and

5. Configure the routing tables on machine 0, machine M-1, and the new machine.

Unlike our hypercube-star hybrid, only two of the machines in a ring-star topology must

be modified to add a new machine.

The only complication occurs when a new machine is to be added and all ports on

the switch are filled. In this case, either the switch can be upgraded to one with more

ports, or a new switch can be added and the switches joined via their uplink ports. The

original machines can then either be left in place, or evenly distributed across the two

switches. Figure 9 shows the cluster from Figure 2 with two additional nodes, and the

machines evenly distributed across two 12-port switches:

Figure 9

A Ring-Double Star (Multi-Switch) Hybrid

More nodes can then be added to each switch. When both switches are filled, the process

can be repeated. When the cluster grows beyond three switches, the switches can be

organized into a tree so as to minimize the number of hops between any two machines, as

shown in Figure 10:

Figure 10

A Multi-Switch Ring-Tree Hybrid

Such reorganization can be done without modifying any of the clusterÕs machines. The

ring-star hybrid is thus an extremely scaleable cluster topology.

switch 1 switch 2

switch 1 switch 2

switch

switch n. . .

.
. .ring of machines

. . .

5. CONCLUSIONS

Building a Beowulf cluster is a rewarding senior project in which one learns much more

than the nuts and bolts of combining several computers. Such a project can be done on a

very limited budget (or even no budget if one wishes to adopt the model of the Stone

SouperComputer).

In selecting a clusterÕs topology, there are tradeoffs between cost, bandwidth, and

scalability. A completely connected topology is only practical for a small cluster (e.g., 4

machines) that is unlikely to ever grow, as its superior bandwidth comes at a very high

cost and poor scalability. A hypercube-star hybrid topology is practical for a small-to-

medium sized cluster that is unlikely to grow, as it trades off high bandwidth against

medium cost and low scalability. A ring-star hybrid topology is practical for a small,

medium, or large cluster that is likely to grow, as it trades off good scalability and low

cost against lower bandwidth. A star topology is good for a small, medium, or large

cluster running coarse or medium-grained parallel computations and that is likely to grow,

as it trades off ease of scalability and low cost against reduced bandwidth. A bus topology

is good for a small, medium, or large clusters running very coarse-grained parallel

computations and that is likely to grow, since it trades off extreme ease of scalability and

very low cost against very low bandwidth.

We recommend the project of building a Beowulf cluster as a senior project for

any student (or a team of students) interested in operating systems, networking, and

parallel computing. The theoretical and technical challenges make it an absorbing and

rewarding capstone project for an undergraduate studentÕs education.

REFERENCES

[1] Becker, D.,Sterling, T., Savarese, D., Dorband, J., Ranawak, U., and Packer, C., BEOWULF: A

PARALLEL WORKSTATION FOR SCIENTIFIC COMPUTATION, Proceedings of the International

Conference on Parallel Processing, 1995.

[2] Becker, D., Linux Network Drivers, http://www.beowulf.org/linux/drivers/index.html.

[3] B. Brooks and E. Billings, LoBoS and LoBoS2Õs Home Page, August 1997, http://www.lobos.nih.gov/.

[4] Geist, Al, PVM Parallel Virtual Machine, August 1999, http://www.epm.ornl.gov/pvm/.

[5] Grop, B. and Lusk, R., The Message Passing Interface (MPI) Standard, February 1999, http://www-

unix.mcs.anl.gov/mpi/.

[6] Grossfiel, A., The Wulfpack Home Page, http://wulfpack.med.jhmi.edu/.

[7] Hill, J., Warren, M., and Goda, M., ÒI'm not going to pay a lot for this supercomputer!Ó, Linux Journal,

45, 1998.

[8] Hoffman, F., Hargrove, W., Schultz, A., The Stone SouperComputer, ORNL's First Beowulf, May 1999,

http://www.esd.ornl.gov/facilities/beowulf/.

[9] Merkey, P., The Beowulf Project at CESDIS, http://www.beowulf.org/.

[10] Warren, M., Loki - Commodity Parallel Processing, http://loki-www.lanl.gov/.

