
Exploring Computer Science with
the Raspberry Pi
Derek C. Schuurman
Professor of Computer Science, Calvin University
version: 1.12 (2023‑2025)

Creative Commons Attribution‑NonCommercial‑ShareAlike License

Exploring Computer Science with the Raspberry Pi

Contents

1 Introduction 7
1.1 The Raspberry Pi . 7
1.2 Initial Setup of the Raspberry Pi . 8
1.3 Getting Started with the Command Line . 8

1.3.1 The Shell . 9
1.3.2 Shell commands . 9

1.4 Text Editors . 11
1.4.1 Nano . 11
1.4.2 Emacs . 11
1.4.3 Vim . 12

1.5 Configuring the Raspberry Pi OS . 14
1.6 Connecting Remotely to the Raspberry Pi . 14

1.6.1 Connecting using a USB‑to‑TTL serial cable 15
1.6.2 Connecting over Ethernet or Wi‑Fi . 16
1.6.3 Raspberry Pi Connect . 18

1.7 Remote Editing with Vscode . 19
1.8 Proper Shutdown . 20

2 Introduction to Programming Languages 21
2.0.1 The Python Programming Language . 21
2.0.2 Setting up a Python Virtual Environment . 23
2.0.3 Using JupyterLab Notebooks . 25
2.0.4 Python Drill Exercises . 26

2.1 Compiling and Running a C/C++ Program . 28
2.1.1 Using a C Debugger . 29
2.1.2 Library Documentation . 31
2.1.3 Other Tools for C and C++ . 32

2.2 Compiling and Running Java Programs . 32
2.3 Other Programming Languages . 33
2.4 Comparing Runtime Efficiency of Different Programming Languages 33

2.4.1 Measuring execution time . 34

3 Computer Organization and Assembly Language 38
3.1 Early Computers . 38

3.1.1 The First Electronic Computers . 39
3.2 Modern Computer Organization . 39

Derek C. Schuurman 1

Exploring Computer Science with the Raspberry Pi

3.3 The Processor . 40
3.3.1 The Digital Logic Level . 42
3.3.2 The Microarchitecture Level . 42
3.3.3 The Instruction Set Architecture (ISA) . 43
3.3.4 The Assembly Language Level . 43

3.4 Memory . 45
3.4.1 Volatile Memory . 46
3.4.2 Non‑Volatile Memory . 46

3.5 Inputs and Outputs (I/O) . 47

4 The Linux Operating System 50
4.1 Introduction . 51
4.2 Process Management . 51

4.2.1 Tools for Managing Processes . 51
4.2.2 Example Program to fork a new process . 52

4.3 Parallel Computation . 52
4.3.1 Multithreaded programming . 53
4.3.2 Multiprocessing . 54
4.3.3 Parallel and Distributed Computing with the Raspberry Pi 57

4.4 File and Memory Management . 57
4.4.1 Memory Management . 57
4.4.2 File Management . 57

4.5 Controlling Inputs and Outputs . 59
4.5.1 Software I/O Strategies . 59
4.5.2 The General Purpose Input and Output (GPIO) Pins 60
4.5.3 Reading and Setting GPIO Pins . 60

4.6 Other OS Support Functions . 62
4.6.1 Logfiles . 62
4.6.2 Updating the Operating System . 62
4.6.3 Securing your Raspberry Pi . 63
4.6.4 Setting up a Print Server . 65

4.7 Compiling the Linux Kernel . 65

5 Networking 68
5.1 Networking Utilities . 68

5.1.1 ping . 68
5.1.2 ifconfig . 68
5.1.3 traceroute . 69

Derek C. Schuurman 2

Exploring Computer Science with the Raspberry Pi

5.1.4 mtr . 69
5.1.5 dig . 70
5.1.6 wget . 71
5.1.7 curl . 71
5.1.8 telnet . 71
5.1.9 nmap . 72
5.1.10 tcpdump . 72
5.1.11 Wireshark . 72
5.1.12 Drill Exercises . 73

5.2 The Web . 73
5.2.1 Lighttpd . 74
5.2.2 Nginx . 74

5.3 Java Network Programming . 75

6 Databases 79
6.1 Introduction to SQL Databases and the Raspberry Pi 79

6.1.1 Using SQLite . 80
6.1.2 Using MySQL . 81
6.1.3 Using PostgreSQL . 87

6.2 Cloud Databases . 92
6.3 Vector Databases . 94

7 Embedded Systems and the Internet of Things 95
7.1 Reading GPIO inputs . 95

7.1.1 GPIO Input Events . 95
7.2 Setting GPIO outputs . 97

7.2.1 Controlling GPIO outputs in a Program . 99
7.2.2 Pulse Width Modulation (PWM) Outputs . 100

7.3 GPIO Serial Communications . 102
7.3.1 Using I2C . 102
7.3.2 The SPI Interface . 105

7.4 Introduction to MQTT for IoT . 105
7.4.1 Sending MQTTmessages from the command line 107
7.4.2 Controlling an LED using Python and MQTT 107
7.4.3 Using MQTT to control Zigbee Devices . 109

7.5 Camera Sensors . 113
7.5.1 OpenCV . 113
7.5.2 AprilTags . 114

Derek C. Schuurman 3

Exploring Computer Science with the Raspberry Pi

7.5.3 Computer Vision at the Edge . 116

8 Exploring Artificial Intelligence 117
8.1 Introduction . 117
8.2 Hardware and Software Support for AI . 117
8.3 SciKit Learn . 117

8.3.1 Linear Discriminate Analysis (LDA) . 119
8.3.2 Principal Component Analysis (PCA) . 120
8.3.3 Support Vector Machines (SVM) . 120
8.3.4 SVM Image Classification . 124

8.4 LiteRT . 126
8.5 Large Language Models (LLMs) . 127

9 Other Tools for Engineers and Computer Scientists 129
9.1 Document Preparation . 129

9.1.1 LaTeX . 129
9.1.2 pandoc . 129
9.1.3 PDF Utilities . 130

9.2 File Utilities . 130
9.2.1 diff . 130
9.2.2 grep . 131
9.2.3 hexdump . 131
9.2.4 readelf . 131

9.3 Software Version Control Systems . 132
9.3.1 Using Git and GitHub . 132
9.3.2 Mercurial Version Control . 134

9.4 Mathematical Tools . 137
9.4.1 SageMath . 137
9.4.2 Octave . 137
9.4.3 gnuplot . 140

9.5 Circuit Simulation with NGSpice . 140
9.5.1 Defining a circuit file for simulation . 140
9.5.2 Example Circuit Simulation . 142
9.5.3 Power Electronics Circuit Simulation . 143

9.6 Ham Radio Applications for the Raspberry Pi . 146
9.6.1 WSJT . 146
9.6.2 fldigi and flrig . 146
9.6.3 TQSL . 148

Derek C. Schuurman 4

Exploring Computer Science with the Raspberry Pi

10 Ethics and Computer Technology 149
10.1 Design norms . 149
10.2 A Brief Normative Analysis of the Raspberry Pi . 151

11 A Collection of Lab Exercises 152
Some Lab Safety Guidelines . 152
Lab #1: Getting Started with the Raspberry Pi . 153
Lab #2: Editing and Running Programs on the Raspberry Pi 160
Lab #3: Using the GPIO Port . 167
Lab #4: Using the PWM output . 176
Lab #5: Scheduling and Kernel latency . 184
Lab 6: M2M Communications with MQTT . 190
Lab #7: I2C with Local Web Server and Local Database . 196
Lab #8: MQTT Security . 205
Troubleshooting Tips for the Raspberry Pi . 207

Closing Note 209

Derek C. Schuurman 5

Exploring Computer Science with the Raspberry Pi

Compatibility Note

The Raspberry Pi project has periodic updates to hardware and software. This was written and tested
using the Buster and Bullseye version of the Raspberry Pi OS and with various models up the Rasp‑
berry Pi up to the model 5. Edits are underway to update the contents to reflect the Bookworm ver‑
sion of the OS. This book is a “work in progress” and the contents are provided “as is,” but the hope
is to incrementally provide updates as time allows.

About the Author

Derek C. Schuurman worked as an electrical engineer for several years and later completed a PhD at
McMaster University in the area of robotics and computer vision using machine learning. He is cur‑
rently professor of computer science at Calvin University in Grand Rapids, Michigan. He is author of
Shaping a Digital World and co‑author of PSpice Simulation of Power‑Electronics Circuits, and A Chris‑
tianFieldGuide toTechnology forEngineersandDesigners. He is aanenthusiasticuserof theRaspberry
Pi.

Dedication

This guide is dedicated to my late wife Carina Schuurman, who encouraged me in my vocation as a
computer scientist, tolerated my frequent tinkering, brought art and beauty (and four children) into
my technical life, and without whom I would not be where I am.

License Terms

This document is provided as‑is for the purpose of providing an introduction to learn some com‑
puter science skills using the Raspberry Pi. It is by no means complete, and may not reflect the
latest software changes and updates. The author specifically disclaims all warranties, express
or implied including, but not limited to, implied warranties of merchantability and fitness for a
particular purpose. This document is provided under the terms of the Creative Commons Attribu‑
tion‑NonCommercial‑ShareAlike License.

Derek C. Schuurman 6

https://sites.calvin.edu/derek/
https://www.ivpress.com/shaping-a-digital-world
https://link.springer.com/book/9780412751400
https://www.ivpress.com/a-christian-field-guide-to-technology-for-engineers-and-designers
https://www.ivpress.com/a-christian-field-guide-to-technology-for-engineers-and-designers
https://sites.calvin.edu/derek/raspberrypi.html
https://sites.calvin.edu/derek/raspberrypi.html
https://sites.calvin.edu/derek/bio.html

Exploring Computer Science with the Raspberry Pi

1 Introduction

The respected computer scientists Edsgar Dijkstra once remarked that “computer science is no more
about computers thanastronomy is about telescopes.” Neither is it aboutnifty computingdevices like
the Raspberry Pi. Even so, having access to a good educational computer is certainly an asset in the
study of computer science. As it turns out, the Raspberry Pi is a wonderful little computer for experi‑
menting withmany basic concepts in computer science. The body of knowledge in computer science
includes a wide range of topics such as programming languages, data structures and algorithms, dig‑
ital logic, computer organization, operating systems, networking and the web, the Internet of Things
(IoT), artificial intelligence, and ethics. The chapters of this book are organized aroundmany key top‑
ics which are explored with practical examples and exercises which can all be performed on a recent
model of the Raspberry Pi.

The discipline of computer science is relatively young compared to other disciplines. It relies onmany
abstract and theoretical concepts from mathematics, including topics from discrete math, algebra,
and calculus. While such theoretical foundations are essential for researchers, there are many con‑
cepts in computer science that are quite accessible to the keen student or hobbyist. This book is
written for such an audience, containingmany practical examples for those with only amodestmath‑
ematical background. Furthermore, this book also serves as a gentle introduction to using the Linux
operating system.

1.1 The Raspberry Pi

The Raspberry Pi is a a nifty little computer about the size of a deck of cards and capable of running
a full Linux desktop operating system while consuming only modest power. It includes USB ports for
connecting a keyboard andmouse alongwith a variety of other peripherals, an ethernet adapter, and
HDMImonitor connections. The Raspberry Pi was originally constructed for education, but has found
fruitful uses for hobbyists, home automation, industrial applications, and as an appropriate technol‑
ogy for use in schools in the majority world. It is manufactured to comply with RoHS (Restriction of
Hazardous Substances) directives and relies on a single microSD card for its storage. It runs a variant
of Linux called the Raspberry Pi OS, and supports a wide variety of open source software, including a
plethora of educational programs. Moreover, it can be purchased at a modest price.

This guide was written primarily with engineering and computer science students in mind, but it will
be of interest to others who have a keen interest in learning more about programming and technical
computing.

Derek C. Schuurman 7

https://github.com/dschuurman/pi-home
https://www.raspberrypi.com/for-industry/
https://www.asa3.org/ASA/PSCF/2015/PSCF3-15Schuurman.pdf

Exploring Computer Science with the Raspberry Pi

Figure 1: The author visiting the Raspberry Pi Store in Cambridge, England

1.2 Initial Setup of the Raspberry Pi

Insert an SD card with the Raspberry Pi OS in the Raspberry Pi and apply power. When you first boot
the regular Raspberry Pi OS it will be running a graphical desktop environment with a friendly menu‑
driven interface. Upon the first boot, a dialogue box will appear guiding you through an initial setup.
Follow the prompts to configure the keyboard and username. Provide a username and a password as
prompted. Configure your Wi‑Fi settings and select the option to “Update Software” (note that this
may take a very long time when you first setup the Raspberry Pi).

1.3 Getting Started with the Command Line

There is also a command‑line based version of the operating system called Raspberry Pi OS Lite.
This version of the OS consumes less power than the regular Raspberry Pi OS running a desktop en‑
vironment and can be used on older models of the Raspberry Pi with less RAM. When setting up the
Raspberry Pi with the Lite OS, you will be prompted to configure the keyboard and provide a user‑
name and password. The Lite version of the OS is well suited for using the Raspberry Pi as a server, as
an embedded system, or in an IoT (Internet of Things) application.

However, for regular desktop use, the regular version of Raspberry Pi OS is best. When using the Desk‑

Derek C. Schuurman 8

Exploring Computer Science with the Raspberry Pi

top OS, the command line can still be accessed using the Terminal app. Alternately, it can also be
accessed using a virtual console by pressing CTRL+ALT+F1 which will enter a full screen terminal. If a
login prompt appears, you can login using the username and password you configured during setup.
One can return to the desktop from a virtual console by pressing CTRL+ALT+F7. Additional virtual
consoles can be independently accessed using CTRL+ALT along with the keys F2 through F6.

1.3.1 The Shell

Once you enter the command line, you will be running in a Linux shell. In simple terms, a shell is a
command interpreter which provides a rich set of commandswhich can be used to execute programs
and interface with the operating system. The Raspberry Pi OS uses the Bash (Bourne Again Shell)
by default, a shell based on an older shell called the Bourne Shell. BASH is popular among users of
Linux and features automatic command line completion using the tab key and can be used to create
programs called shell scripts.

There are a variety of different Linux shells that can be used. As indicated, the default Linux shell is
the Bash shell, but other shells are also available. Each shell has its own features and options. For
example, to switch the default shell from Bash to the Z shell (zsh), type the following

sudo apt install zsh -y
chsh -s /bin/zsh

After issuing these command, logout and then back in and you should now be running with zsh. Vari‑
ous configuration options can be set inside a file named .zshrc located within your home folder.

1.3.2 Shell commands

Some of the commands available in the shell are summarized below:

Command Description

cd directory Changes the current working directory to directory

pwd Displays the name of the current working directory

mkdir directory Create a new directory called directory

rmdir directory Removes the directory called directory

ls Display a list of files in the current directory

cp f1 f2 Copy a file from the source f1 to the destination f2

rm filename Remove a file filename

Derek C. Schuurman 9

https://www.gnu.org/software/bash/

Exploring Computer Science with the Raspberry Pi

Command Description

mv f1 f2 Move a file from f1 to f2

ftp host Transfer files to and from host

diff f1 f2 Display the difference between file f1 and file f2

cat filename Displays the contents of filename

more filename Displays contents of filename pausing when screen is filled

head filename Displays contents at the beginning of filename

tail filename Displays contents at the end of filename

wc filename Displays the number of newlines, words, and bytes in filename

clear Clears the terminal display.

date Display the current date and time.

df Report the amount of free disk space available

du Report the amount of disk usage

find path conditions Utility for finding files

locate search‑string Utility for locating files

free Report information about memory usage

hostname Display the name of the current host system

talk user Talk to user on your machine or on another host

uptime Display the current time stats

who Display the users currently logged‑on the system

whoami Display your User ID

uname -a Display information about the operating system

These commands only represent a portion of the user commands available in a Linux shell. An on‑line
manual referred to as theman (manual) pages provides help on the many commands and programs
that can be called from the shell. The syntax for invoking the man utility is as follows:

man command-name

The information regarding the specified command-name will then be displayed on the screen. To
search for a keyword in the man pages, type:

Derek C. Schuurman 10

Exploring Computer Science with the Raspberry Pi

man -K keyword

To find out more about the man utility simply type

man man

from the command prompt. There are several basic system commands which are commonly used.
Many of the commands listed below have additional options whichmay be invoked. Consult the man
pages for more information.

Another fun way to learn the command line is to download and play The Command Line Mur‑
ders, a game that requires you to access the command line to figure outwhodunit. To install the
game, visit https://github.com/veltman/clmystery.

1.4 Text Editors

Text editors are used to edit system configuration files as well as program source files. There are sev‑
eral simple text editors available with Linux distributions, including with the Raspberry Pi. These in‑
clude a simple text editor named nano and some classic text editors like Emacs and vim. These
editors can be used within a simple command line environment.

To get started, a very brief summary of the basic commands for these text editors are summarized
below. In particular, the Emacs and vim editors possessmore powerful and advanced featureswhich
the reader may wish to learn once the basics have beenmastered. For more information, consult the
man pages or the web.

1.4.1 Nano

The nano editor is a very basic command line editor. It is quite limited but also very easy to use. It is
also included by default in all Raspberry Pi software distributions. To edit a file using nano, type:

nano filename.txt

where filename.txt is the name of the file you want to edit. If the file does not exist, it will be
created. Other editors are available in the command line environment, like emacs and vi, which are
simple but far more powerful alternatives to nano.

1.4.2 Emacs

One editor youmaywish to consider using is Emacs, although Emacs ismuchmore than just an editor.
When running inagraphical environment, X‑Emacsprovidesa toolbarmenuof thevarious commands.

Derek C. Schuurman 11

https://github.com/veltman/clmystery

Exploring Computer Science with the Raspberry Pi

However, when running in a text terminal, the user must use various control keys to issue the editor
commands.

The list of basic commands for Emacs is summarized in the table below:

Command Description

Ctrl‑x Ctrl‑s Save

Ctrl‑x Ctrl‑c Exit

Ctrl‑h Help

Ctrl‑h t Emacs tutorial

Del Delete preceding character

Ctrl‑g Cancel Command

Ctrl‑x Search (in the forward direction)

Ctrl‑x Move down one page

Ctrl‑x u Undo last change

Esc < Move to the beginning of the file

Esc > Move to the end of the file

Use the help command (ctrl-h) to list additional commands or for more information.

1.4.3 Vim

Another popular editor is the Vim editor. The name Vim refers to “vi improved” since it was inspired
by the classic “vi” editor created for the Unix operating system by the computer engineer, Bill Joy. In
2018 it was found to be themost popular editor by readers of Linux Journal. Note that a playful rivalry
between vim and emacs users sometimes referred to as the “editor wars”.

To edit a file using vim, type:

vi filename

Vim has two basic modes of operation: command mode and input mode. Text may only be entered
while in input mode. The user must hit the escape key to exit input mode and enter commandmode
before any editing commands are entered. The list of basic commands is summarized below.

Derek C. Schuurman 12

https://www.vim.org/
https://en.wikipedia.org/wiki/Bill_Joy
https://www.linuxjournal.com/content/best-editor-0
https://en.wikipedia.org/wiki/Editor_war

Exploring Computer Science with the Raspberry Pi

Command Description

↑↓→← Move up, down, right, left (if terminal emulation is configured right)

0 Move to the start of the current line

$ Move to the end of the current line

escape key Ends input mode and returns to commandmode.

a Appends text after current position and enters input mode

A Appends text at the end of the current line and enter input mode

i Inserts text at current position and enters input mode

o Inserts a line below the current line and enters input mode

rc Replaces the current character with c

R Replaces the current text with the text you type after R

x Deletes current character

dw Deletes a word

dd Deletes current line of text

:q Quits and exits from vi (only if no changes were made)

:q! Quit and exits without saving

:w Saves the file you are editing

:wq Saves the file you are editing and quits

/pattern Searches the file for text matching pattern

For those who are looking for a more “suped up” version of vim, try installing neovim. This can be
installed using apt as follows:

sudo apt install neovim

To launch the neovim editor, simply type:

nvim filename

where filename is the name of the file you wish to edit.

Derek C. Schuurman 13

https://neovim.io/

Exploring Computer Science with the Raspberry Pi

1.5 Configuring the Raspberry Pi OS

The Raspberry Pi OS comeswith a utility calledraspi-config that can be used to configure awide
variety of settings and services. To run this utility, type:

sudo raspi-config

This will launch the Raspberry Pi configuration utility within the terminal with a main menu like the
one shown below.

Figure 2: Raspberry Pi configuration utility

The Raspberry Pi configuration utility can be used to enable the camera interface as well as serial, I2C,
and SPI communications. It also includes an option to boot directly to the command line rather than
the desktop.

1.6 Connecting Remotely to the Raspberry Pi

It is possible to run the Raspberry Pi headless, without a screen, keyboard, ormouse. This is often the
case when using the Raspberry Pi in an embedded application or an IoT (Internet of Things) configu‑
ration. The following subsections describe how to connect to your Raspberry Pi remotely using one
of the following options:

• using a USB‑to‑TTL serial cable
• using SSH over an Ethernet or Wi‑Fi connection
• Raspberry Pi Connect service

Some models of the Raspberry Pi can be connected using a USB cable. This works by enabling USB
Gadget Mode, which allows a USB port to present itself as a variety of different types of devices. This

Derek C. Schuurman 14

Exploring Computer Science with the Raspberry Pi

is known to work with the Raspberry Pi Zero and not with most other models. The two approaches
described below should work with all models of the Raspberry Pi.

1.6.1 Connecting using a USB‑to‑TTL serial cable

A USB‑to‑TTL serial console cable can allow you to log into your Raspberry Pi from another computer
using a serial link. A serial port console must be first enabled on the Raspberry Pi using raspi-
config. To enable the serial console, type:

sudo raspi-config

The console service can then be enabled in the raspi-config menu under Interface Options →
serial.

Next, a suitable USB‑to‑TTL serial console cable must be connected to the proper pins on the GPIO
port. With the power off, start connecting the cable wires to the GPIO pins on the Raspberry Pi as
follows:

• black lead to GND on the GPIO port
• white lead to TXD on the GPIO port
• green lead to RXD on the GPIO port
• Leave the red lead disconnected!

A diagram showing the serial cable connections to the GPIO port is shown below.

Note: Ensure that theRaspberryPi is poweredoff beforeaddingor removing theUSBserial cable
pins from the GPIO port. In general, always power down before connecting or disconnecting
circuits to the GPIO port pins!

Next, connect the USB‑to‑TTL serial console cable to a USB port on a Linux workstation. Type the
following command in a terminal window on the workstation:

screen /dev/ttyUSB0 115200

where/dev/ttyyUSB0 is the serial port device and115200 is thebit rate (or baud rate) of the serial
connection. The screen program is a serial communications program that can use the USB port to
communicate with the Pi. Power up the Pi and, after a few moments, hit enter a few times. It may
take a few moments for the serial connection to “sync,” and you may initially see “gibberish” on the
screen. If the connection has trouble syncing, try re‑inserting the USB cable or hitting return a few
more times. A login prompt should eventually appear. Log into your Raspberry Pi and confirm that
the serial connection is working.

Derek C. Schuurman 15

Exploring Computer Science with the Raspberry Pi

Figure 3: USB‑to‑TTL serial cable GPIO wiring details

Note: Here the serial port device is assumed to be /dev/ttyUSBB0, however the USB device
name may be different on your system. While Linux includes all necessary drivers to use the
USB‑TTL serial cable, OSX or Windows may require installing extra drivers. Moreover, OSX and
Windows will require using a different serial communication program.

1.6.2 Connecting over Ethernet or Wi‑Fi

The previous two approaches allow remote connections to the Raspberry Pi, but the remote distance
is limited to the length of the serial or USB cables being used. It is also possible to use a network
connection which enables secure, high speed remote connections over much greater distances.

The Raspberry Pi can be connected to a network via the Ethernet port or with Wi‑Fi. To use the Ether‑
net connection, simply insert an Ethernet cable connected to a network using DHCP (Dynamic Host
Configuration Protocol) and it should be automatically configured.

To use Wi‑Fi, one can click the icon in the top right corner of the graphical desktop environment and
select the access point and enter authentication details as required. If you are using the command‑
line, one can use the raspi-config tool to setup theWi‑Fi network by selecting SystemOptions→
Wireless LAN. From there, follow the prompts to setup the Wi‑Fi interface.

Once a network interface is running, we can use SSH (secure shell) to connect to the Raspberry Pi over
a network connection. Before you can use SSH, you need to enable the secure shell server inraspi

Derek C. Schuurman 16

Exploring Computer Science with the Raspberry Pi

-config. The SSH service can be enabled in the raspi-configmenu under Interface Options →
SSH. Once the server is running, users can log in remotely using the SSH protocol.

Beforewe can connect, we need to know the IP address of the Raspberry Pi. Theifconfig program
allows you to query the status of your WiFi or Ethernet network as follows:

ifconfig wlan0

If the Wi‑Fi network is running, an IP address should be assigned to the wlan0 adapter. For example,
the first two lines should look like this:

wlan0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.1.2.3 netmask 255.255.192.0 broadcast 153.106.63.255

The decimal dotted number beside the inet label is your IP address. Make a note of the IP address
(in the example above, the IP address is 10.1.2.3). Note that if you were to use Ethernet, the IP
address assigned can be queried by typing:

ifconfig eth0

Note: TheWi‑Fi and Ehternet IP addressmay change each time you boot if they are assigned by
your router using DHCP leases.

Now that we have determined the Wi‑Fi or Ethernet IP address of your Raspberry Pi we can connect
to a shell from a remote computer using SSH. The SSH client is normally includedwith Linux and OSX
operating systems. If you are using a recent version ofWindows, you could use Putty (a commonopen
source SSH client) or theWindows subsystem for Linux orWSL. WSL includes support for a basic shell
(including ssh andmany other commands) and can be launched by typing WSL in the start menu.

Tomake an ssh connection, open a terminal window on your remote computer and type:

ssh user@10.1.2.3

where user is the username and 10.1.2.3 is the IP address of the Raspberry Pi. If everything
is working, you should be able to log in successfully using the username and password you config‑
ured.

You canalsousessh to transfer files betweenyour computer and theRaspberryPi using a tool related
to SSH called secure copy (scp). To us scp, type:

scp filename user@10.1.2.3:

This will transfer a local file named filename to the home folder of user on the Raspberry Pi at IP
address 10.1.2.3. Note that youwill be prompted for the password for user (unless you are using
ssh keys).

Derek C. Schuurman 17

https://www.putty.org/
https://learn.microsoft.com/en-us/windows/wsl/about

Exploring Computer Science with the Raspberry Pi

Using ssh to connect to a Raspberry Pi has a few limitations. First, you can normally only access
a Raspberry Pi on the same local network (if it is remote, you will need a “pinhole” opened on any
firewalls to allow traffic to port 22, which presents possible security issues). Second, even if the Rasp‑
berry Pi is on the same local network, you still need to know its Wi‑Fi or Ethernet IP address. In some
situations, a static IP address can be configured to ensure the IP address remains fixed over time, but
IP addresses are often “leased” from aDHCP server and can change over time. One could temporarily
connect a monitor and keyboard to the Raspberry Pi to log in and determine the IP address, but that
is cumbersome and impractical.

The next section discusses a tool that overcomes these challenges by providing a way to connect to
the Raspberry Pi that can be done from anywhere in the world and requires no knowledge of its IP
address.

1.6.3 Raspberry Pi Connect

Raspberry Pi Connect provides access to your Raspberry Pi from anywhere in the world. There is a
“Lite” version that only supports remote shell access, and to install the Raspberry Pi Connect Lite soft‑
ware, type:

sudo apt install rpi-connect-lite

Next, use the rpi-connect command to start Connect for your current user as follows:

rpi-connect on

Similarly, when you want to stop Connect, run:

rpi-connect off

It is also recommended to enable “user‑lingering”which allows you to log in remotely evenwhen you
are not logged in locally. Type:

loginctl enable-linger

Once Connect is running, use the following command to generate a link that will allow you to use the
device:

rpi-connect signin

Point a browser to the link provided. If you don’t already have a Raspberry Pi ID account, you will
need to create one. Raspberry Pi ID also provides options for two‑factor authentication (2FA) which
you can enable for enhanced security.

Derek C. Schuurman 18

https://www.raspberrypi.com/documentation/services/id.html#create-a-raspberry-pi-id

Exploring Computer Science with the Raspberry Pi

Once you have a Raspberry Pi ID, you can follow the link and log in to your Raspberry Pi ID account.
Choose a unique name to identify the device, click “Create device.” You should receive an email no‑
tification that a new device is available. Once the device is setup, you will be able connect to a shell
remotely from anywhere by pointing a browser to connect.raspberrypi.com and clicking on the Con‑
nect button next to the device name.

If you are having problems connecting, try using a different browser, such as Google Chrome.

Warning: If you receive an email reporting a strange sign‑in on Connect, immediately change
your Raspberry Pi ID password and remove the device from your account. Consider enabling
two‑factor authentication for greater security.

To learn more, visit Raspberry Pi Connect.

1.7 Remote Editing with Vscode

Using text editors likenanoon theRaspberryPi canbe cumbersome. Another option is tomakeuseof
a more elaborate editor on a desktop or laptop and remotely edit files on the Raspberry Pi. One such
program for doing this is Visual Studio Code, or simply vscode. Vscode is a general‑purpose editor that
provides a variety of useful features and plugins for editing programs.

While vscode can be installed locally on the Raspberry Pi, it can also be used for remote editing on
desktop or laptop (running Windows, OSX, and Linux). After launching vscode, perform the following
steps:

• type ctrl-shift-x to bring up the vscode extensions
• type “Remote SSH” in the search box
• select and install the Remote‑SSH extension

After the installation is complete, you should see a new green “connect” icon appear in the bottom
left corner of vscode. Click the green connect icon and select “Remote SSH: Connect current window
to host”. Next, enter the SSH connection details, for example, user@10.1.2.3where user is your
username and 10.1.2.3 is IP address of your Raspberry Pi. Finally, you will be prompted to enter
your Raspberry Pi password and then youwill need towait briefly as vscode initializes and establishes
a connection.

Once the setup and initialization is complete, click on the link to “open folder” (or select File→Open
Folder) and your home folder on the remote Raspberry Pi should appear! Select the folder you wish
to work within and click “OK.” This will become your current “working folder” on the Raspberry Pi. A
list of files should appear on the left where you can select and open source files for editing. Vscode

Derek C. Schuurman 19

https://connect.raspberrypi.com
https://www.raspberrypi.com/documentation/services/connect.html
https://code.visualstudio.com/

Exploring Computer Science with the Raspberry Pi

provides a quick and convenient way to ssh into the Raspberry Pi by typing ctrl+' which opens a
new remote terminalwindow to thePi. In the terminalwindowyou can compile and run theprograms
you edit.

Note how much more delightful it is to use an advanced editor over SSH rather than editing code
locally with the nano editor.

1.8 Proper Shutdown

A final note regarding proper shutdown of the Raspberry Pi. One should never just remove power
from the Raspberry Pi since this can lead to corruption of the SD card. In order to perform a proper
shutdown of the Raspberry Pi, type the following command:

sudo halt

Once Linux has shutdown and the green activity LED has stopped flashing, youmay unplug the power
supply. Alternately, youmay reboot the Raspberry Pi from the command line by typing:

sudo reboot

Derek C. Schuurman 20

Exploring Computer Science with the Raspberry Pi

2 Introduction to Programming Languages

Grace Hopper is a famous pioneer in computer science who is often referred to as the person “who
taught computers to talk.” Her pioneering work led to the development of the compiler, a program
that translates higher level instructions into the primitive machine code that computers can execute
directly. Herwork contributed to thedevelopment of theCOBOLprogramming language andblazeda
trail for the development of future programming languages. For this reason, Grace Hopper has some‑
times been referred to as “Amazing Grace.”

Figure 4: Grace Hopper, U.S. Navy, 1984 (public domain)

The Raspberry Pi repositories include support for COBOL, as well as a rich set of more modern pro‑
gramming languages such as Python, C, C++, and Java. It has support more niche and legacy pro‑
gramming languages.

Generally, the paradigms for programming languages fall into three general categories:

• procedural programming languages
• object oriented programming languages
• functional programming languages

2.0.1 The Python Programming Language

Python was invented in the early 1990’s by Guido van Rossum. Python can be written using either
a procedural or object oriented paradigm. It is an open source project that is widely available, uses
simple syntax and includes rich libraries and offers a variety of programming tools, Python source
code is run on a virtual machine which translates code into the specific machine‑code executed by
the processor. Because Python is interpreted by a virtual machine, it is platform independent.

Derek C. Schuurman 21

Exploring Computer Science with the Raspberry Pi

The Raspberry Pi should have Python installed by default and can run Python programs directly from
the command line. To enter a program, you first need a plain text editor. If you are using a desk‑
top environment, there is a friendly, graphical, integrated development environment (IDE) for Python
suitable for beginners called Thonny. To install Thonny, type:

sudo apt install thonny

For more advanced users in a graphical environment, the vscode program provides an excellent
editor for coding in a variety of different languages, including Python. As described earlier, vscode
can also be run to edit files remotely.

If you are using the command line, you can use any of the command line editors described in the
preceding sections, including vi, emacs, or nano. For example, to edit a Python source file called
hello.py, type the following:

nano hello.py

Next, enter the following code into the source file:

name = input('What is your name? ')
print('Hi', name,' welcome to the Raspberry Pi!')
print('Good Bye')

Next, save and exit nano and run the file by typing:

python3 hello.py

The program should run as expected.

2.0.1.1 Plotting inPython Matplotlib is aniftyPythonplotting librarywhichproducespublication
quality figures including plots, histograms, power spectra, bar charts, error charts, scatter plots, and
more. Of course, using Matplotlib presupposes a graphical desktop environment in order to display
the plots. To install matplotlib, type:

sudo apt install python3-matplotlib

Once the library is installed, it can then be imported and used in a Python program. For example, the
following code takes two lists and plots them in an x‑y scatter chart shown in the figure below.

import matplotlib.pyplot as plt

xdata = [1, 2, 3, 4, 5, 6, 7, 8]
ydata = [1, 4, 9, 16, 25, 36, 49, 64]

plt.plot(xdata, ydata)
plt.xlabel('some numbers')

Derek C. Schuurman 22

Exploring Computer Science with the Raspberry Pi

plt.ylabel('some squares')
plt.show()

Figure 5: Example of a simple matplotlib plot

Further examples of matplotlib in action can be found on the matplotlib documentation pages.

2.0.2 Setting up a Python Virtual Environment

Formost situation, onecan install Pythongloballywithall libraries anddependencies. However, there
are times when tinkering with Python that you may want to isolate all the settings from your system‑
wide settings. Making changes to system‑wide Python settings can lead to instabilities in the Python
environment or cause conflicts with other system‑level applications. A virtual environment uses its
own isolated installation directories and Python packages. This is particularly useful if you are devel‑
oping new libraries or experimenting with bleeding‑edge Python packages and releases. In essence,
a Python virtual environment gives you a “sandbox” in which you can adjust settings, libraries, and
Python versions without impacting any of your other settings. According the the Python documenta‑
tion, “Each virtual environment has its own Python binary (allowing creation of environments with
various Python versions) and can have its own independent set of installed Python packages…”

To setup a Python virtual environment, we can use the built‑in venvmodule as follows:

python -m venv env_name

Derek C. Schuurman 23

https://matplotlib.org/
https://python.readthedocs.io/en/latest/library/venv.html
https://python.readthedocs.io/en/latest/library/venv.html

Exploring Computer Science with the Raspberry Pi

whereenv_name is aname for thenewvirtual environment. Toactivate thisnewvirtual environment,
type:

source env_name/bin/activate

Once a virtual environment is activated, you can install any packages or libraries you wish, and these
will be isolated within the virtual environment. To install a package in the new virtual environment,
type:

pip3 install package_name

where package_name is the name of the package you want to install in the virtual environment. To
list the packages and version currently installed, type:

pip3 list

To leave a virtual environment, simply type:

deactivate

Once a virtual environment is established, one can freeze the requirements into a file as follows:

pip3 freeze > requirements.txt

To rebuild a virtual environment from the requirements file, type:

pip3 install -r requirements.txt

An alternative to the pip3 tools for virtual environments is the uv tool. To install uv, type:

sudo apt install uv

To begin a project, type:

uv init project_name
cd project_name

where project_name is the name of the project. Suppose you need a project that requires the
flask library. In this you simply type:

uv add flask

Otherdependencies can thenbeaddedasneeded. Note that aproject file namedpyproject.toml
will be created in the folder with information about the Python version and all the library dependen‑
cies. Finally, to run the project, simply type:

uv run myprogram.py

Derek C. Schuurman 24

https://docs.astral.sh/uv/

Exploring Computer Science with the Raspberry Pi

and the proper Python version and libraries will be made available to run the program. The uv tool
can be used to query and install different versions of Python. To list the installed and available Python
versions, type:

uv python list

To install another version of Python, type:

uv python install 3.13

2.0.3 Using JupyterLab Notebooks

A Jupyter notebook provides a sharable document that combines Python code, plain language docu‑
mentation, data, along with charts and graphs.

Figure 6: Sample Jupyter notebook running in a web browser.

To install JupyterLab, type:

sudo apt install jupyter

To start JupyterLab, open a terminal window and enter the directory in which youwish towork. Next,
type:

jupyter notebook

Derek C. Schuurman 25

Exploring Computer Science with the Raspberry Pi

This should will start the jupyterlab running on your Raspberry Pi. Leave the terminal window open
and open a browser and point it to the address http://localhost:8888. You can begin a new Python
notebook or open an existing notebook.

For more information on using Jupyter, visit https://jupyter.org.

2.0.4 Python Drill Exercises

1. Write a loop that counts from 100 down to 0 backwards by 2 using a for loop and then a while
loop.

2. Write a function called triangle that takes one argument specifying the height of a triangle.
Use a nested loop to print a triangle using the ’*’ character where the number of lines corre‑
sponds to the height parameter. For example, given an input of 8, the function should print:

*
**

3. Write a program that chooses a random integer between1 and10 andprompts the user to guess
the number, indicating whether the guess is too high, too low, or correct.

4. Given the following block string:

rhyme = \
'''Twinkle, twinkle little star
how I wonder what you are
up above the stars so high
like a diamond in the sky'''

Write a code to print out each of the following information:

• the first 7 letters and also the 22nd to the 28th letters
• test if the word “hat” appears int the string
• a new string where all occurrences of “star” are replaced with “planet”
• the number of letters
• the number of words
• a sorted list of all the words

Derek C. Schuurman 26

http://localhost:8888
https://jupyter.org

Exploring Computer Science with the Raspberry Pi

5. Write a function that prints the first 100 Fibonacci numbers in a neat left‑justified and aligned
table. The first column isan integer sequencesignifying the indexof theFibonacci number (1,2,3
and so on) and the second column is the actual Fibonacci number.

6. Write a function called lastWord that takes a sentence string as an argument and returns the last
word in the sentence.

7. Install a list of dictionary words as follows:

sudo apt install wamerican

This command installs a list of dictionary words for the Raspberry Pi OS in the file /usr/share/
dict/wordswhere each line in the file is a dictionary word.

Next, write a program to generate a list of 10,000 random 5 letter words using lower case letters only.
To select random letters use the choice function from the random library as follows:

random.choice("abcdefghijklmnopqrstuvwxyz")

Finally, write a program that takes each random “word” and searches the dictionary and print all the
random words which are real words found in the dictionary. What percentage of the random words
are real words?

8. Create a dictionary of names and ages as follows:

info = { 'Bob': 23, 'Larry': 16, 'George': 37, 'Kim': 19, 'Lisa': 45 }

Using the dictionary above, do the following:

• Write an expression to give the length of the dictionary
• Write an expression to print Kim’s age
• Remove Larry from the dictionary
• List all the keys and then all the values in the dictionary

9. The following steps revolve around a Python class.

a) Write a Python class called Book that represents a library book. The book class should define
the following object variables with appropriate accessors andmutators:

• author
• title
• call number
• publisher
• publication date

Derek C. Schuurman 27

Exploring Computer Science with the Raspberry Pi

b) Next, create another class called Catalog that holds a dictionary of all the books in the library
(with the key being the call number of the book and the value being a book object).

c) Create a class called “Borrower” that represents a library client with a library card. The class
should include a name, a card number and a list of books that are currently signed out along
with appropriate accessor andmutator methods.

d) Create a list of “borrowers” and have them take out several books.

10. Create a class named Fraction to represent a fraction and add the following methods:

• add a constructor that sets the numerator and a denominator
• add a __str__method
• add accessor andmutator methods for the numerator and denominator
• create method to overload the multiplication operator so that it works with fractions
• write code to test your class

2.1 Compiling and Running a C/C++ Program

Linux has a variety of tools to support software development in both C and C++. In fact, the Linux
operating system itself is written in C. The C programming language is a procedural language, and
C++ builds on C to provide support for object oriented programming. The compilers which we will
use under Linux are the GNU C Compiler (gcc) and the GNU C++ compiler (g++). To ensure the GNU
C/C++ compiler tools are installed, type:

sudo apt install gcc g++ gdb build-essential

For example, to enter a simple C program named hello.c using the nano editor, type the follow‑
ing:

nano hello.c

Using the editor, enter the following code into the source file:

/* A Raspberry Pi C program */
#include <stdio.h>

int main(void)
{

printf("Hello world.\n");
printf("Compiled and run on a Raspberry Pi.\n");
return 0;

}

Save and exit the editor. To compile your source code type the following at the prompt in a terminal
window. For example, to compile the hello.c program above, you can enter:

Derek C. Schuurman 28

Exploring Computer Science with the Raspberry Pi

gcc -Wall -o hello hello.c

The gcc compiler has numerous other command line options which you may use. For more infor‑
mation consult the man pages. Note that the C++ compiler can be invoked by using g++ in place of
gcc.

To run the compiled program in the current working directory, do not forget to specify a ./ in front
of the program name to specify the path as the current directory. For example, to run the hello.c
program after compiling it as ini, type:

.\hello

If no output filename was provided to the compiler the default output filename will be a.out.

2.1.1 Using a C Debugger

Debugging is frequently part of the process of programming. There are several techniques to debug
code. Sometimes debugging may be accomplished by sprinkling printf statements throughout your
code to display the state of your program and variables as it executes. Another way to debug code is
to use a special debugging tool that allows you to see what is going on inside your program while it
executes. The gcc compiler has a powerful debugger called gdb (the GNU debugger). Most integrated
development environments (IDEs) provide a friendly interface for using the debugger. In this tutorial
we will look at using the debugger from the command line.

To demonstrate gdb in action, create the sample program as shown below to perform simple calcula‑
tions based on user input.

/* Sample C program
An Introductory Guide to Using Linux with the Raspberry Pi
This program multiplies 3 numbers provided by the
user and prints the result to the display */
#include <stdio.h>

int main(void)
{

float x,y,z;

printf("\nWhat is the first number? ");
scanf("%f",&x);
printf("\nWhat is the second number? ");
scanf("%f",&y);
printf("\nWhat is the third number? ");
scanf("%f",&z);
printf("\n%f * %f * %f is equal to %f\n",x,y,z,(x*y*z));
return 0;

Derek C. Schuurman 29

Exploring Computer Science with the Raspberry Pi

}

Practice using the debugger with the code you wrote in the previous step. Load the source file and
then re‑compile it using the following command:

gcc -Wall -g multiply.c -o multiply

Note that the extra-g option tells the gcc compiler to include information in the output file for use by
the debugger. To start the GNU debugger, type:

gdb multiply

At the prompt in the debugging window you can now enter various commands. For example, to set a
breakpoint for the start of the main() function by type:

break main

A breakpoint stops program execution allowing you trace your program step‑by‑step. To begin run‑
ning your program type:

run

The program will halt at the first line in your program which will be high‑lighted in the source file. To
display the contents of the x, y and z variables type:

display x
display y
display z

Note that before these variables are initialized they contain “garbage” values. This will show why it
is always a good idea to initialize variables to a known value. Youmay begin single‑stepping through
each line of your code by typing “s” (for “step”) in the debugging window.

When your program ends, youmay quit the debugger by typing:

quit

The debugger includes several additional commands that are useful when debugging code. Some of
the gdb commands which can be entered after the (gdb) prompt are listed in the table below:

gdb Command Description

run Start running a program

break function Set a breakpoint at the start of a function

break line number Set a breakpoint at a line number

Derek C. Schuurman 30

Exploring Computer Science with the Raspberry Pi

gdb Command Description

info break list all breakpoints

disable breakpoint disables a breakpoint

enable breakpoint enables a breakpoint

continue resume running the program

list list the next source lines

next execute the next statement

step same as next, but step into a function

print variable print the value of a variable

display variable display the value of a variable after each step

set variable=value assign a new value to a variable

help display a list of gdb commands

help command display help on a specific gdb command

quit quit gdb

The debugger can also be used to examine core dumps when segmentation faults occur. For more
information on using the debugger, type help at the debug prompt or type man gdb for more infor‑
mation.

2.1.1.1 Strace Anotherdebugging tool is thestraceprogramwhichcanuseused to tracesystems
calls made during the execution of a compiled program. For example, to trace the execution of the
hello program in the previous section, type:

strace ./hello

2.1.2 Library Documentation

The man pages include documentation on most of the functions found in the various C Libraries. To
display information on a C function type the following:

man -S3 function_name

Derek C. Schuurman 31

Exploring Computer Science with the Raspberry Pi

where function_name is the name of the function you want documentation for. Documentation
also includes the names of the #include header files that must be included for a given function.

2.1.3 Other Tools for C and C++

The make utility can be used to automatically determine which pieces of a large program need to be
recompiled. Type man make for more information.

Another program to assist C programmers is splint, a tool for statically checking C programs for
security vulnerabilities and coding mistakes. To use splint, it should be first installed as follows:

sudo apt install splint

Once it is successfully installed, it can be invoked as follows:

splint source.c

where source.c is the name of your C source file.

2.2 Compiling and Running Java Programs

It is also possible to develop and run Java programs using Linux on the Raspberry Pi. There are two
different packages which can be installed: on provides the Java Runtime Environment (JRE) and an‑
other provides the JavaDevelopment Kit (JDK). The JRE just allows you to run Java programs, but the
JDK enables one to compile and run Java programs.

To install the OpenJDK Java development kit, type the following:

sudo apt install default-jdk

Once this is installed you can compile a Java program. For example, enter the following simple Java
program named hello.java using a plain text editor:

/* A Java program */
class Main {
public static void main(String args[]) {

System.out.println("Hello world.\n");
}

}

Compile the program by typing the following at the prompt:

javac hello.java

Derek C. Schuurman 32

Exploring Computer Science with the Raspberry Pi

wheremyprogram.java is the nameof a Java source file. To run a Javaprogram, type the following
at the prompt:

java Main

where Main is the name of the class where the program begins.

2.3 Other Programming Languages

The Linux platform provides a plethora of open source developments tools and programming lan‑
guages. Theoptions range from fashionable programming languages tomoreniche languages aswell
as many historical programming languages. The following table lists some additional programming
languages that are available as well as the name of the corresponding package in the apt reposi‑
tory.

Programming Language Package Name(s) Description

Fortran gfortran GNU Fortran project implementation of FORTRAN 2018

PHP php scripting language for web development

Nodejs nodjs,npm JavaScript runtime environment

Perl perl classic scripting language

C/C++ gcc,g++ GNU C/C++ compiler

Python python3 Python version 3

Ruby ruby high‑level, interpreted programming language

Java default-jdk OpenJDK Java compiler and virtual machine

Gambas gambas3 object‑oriented version of BASIC programming language

Mono mono-complete open‑source .NET compatible software framework

Scheme mit-scheme dialect of the Lisp family of programming languages

Prolog swi-prolog classic logic programming language

Tcl tcl,tk Tool Command Language (pronounced “tickle”)

2.4 Comparing Runtime Efficiency of Different Programming Languages

One advantage of C is that it is compiled to machine code, a process by which the code is converted
to native machine language (in the case of the Raspberry Pi, the native code for the ARM processor).

Derek C. Schuurman 33

Exploring Computer Science with the Raspberry Pi

In contrast, Python runs using an interpreter which translates the Python code, step‑by‑step, into the
local machine code. As such, Python has additional overhead at run‑time.

The difference in execution time can be demonstrated by running the same algorithm implemented
in three different programming languages: C, Python, and Java.

2.4.1 Measuring execution time

The runtime of a program can then be determined using the special time utility. For example, the
following command:

time sleep 3

returns the time taken for the command to execute. In this example, it will return something like the
following:

sleep 3 0.00s user 0.00s system 0% cpu 3.002 total

This shows the user time (the number of CPU seconds spent in user mode), the system time (the
number of CPU seconds spent in kernel mode), and the cpu time (the elapsed “wall clock” time).

Thetimeutility can resolve runtimeson theorder of amillisecondor so. Hence, comparingexecution
times requires runningprograms that require a non‑trivial execution time, ie. much greater than amil‑
lisecond. For our runtime comparison, we will implement a classic numerical integration algorithm.
The approach to numerical integration we will use is sometimes referred to as a Riemann summation.
In this approach, the area under a function 𝑓(𝑥) over the interval [𝑎, 𝑏] can be approximated by sum‑
ming a series of 𝑛 rectangles. The amount of computation time (and the accuracy of the numerical
integration) is directly related to the number of steps, 𝑛. Thus, an integral can be approximated by
the following:

∫
𝑎

𝑏
𝑓(𝑥) 𝑑𝑥 ≈ Δ𝑥[𝑓(𝑎) + 𝑓(𝑎 + Δ𝑥) + 𝑓(𝑎 + 2Δ𝑥) + ⋯ + 𝑓(𝑎 + (𝑛 − 1)Δ𝑥)] =

𝑛−1
∑
𝑖=0

𝑓(𝑥𝑖)Δ𝑥

where Δ𝑥 = 𝑏 − 𝑎
𝑛 . A plot illustrating this expression for 𝑓(𝑥) = √𝑥, 𝑎 = 1, and 𝑏 = 5 with 𝑛 = 10

steps is shown below.

The Riemann summation for the integral∫5
1

√𝑥 𝑑𝑥 using 𝑛 = 1000000 can be computed in Python as
follows:

import math

NUM_STEPS = 1000000 # number of integration steps
a = 1 # lower limit of integration

Derek C. Schuurman 34

Exploring Computer Science with the Raspberry Pi

1

x

2

2.5

5

1

4 7630 2

1.5

0

3

0.5

f(x)=sqrt(x)

Figure 7: Illustration of integration using a Riemann sum of rectangles

b = 5 # upper limit of integration
DELTA_X = (b-a)/NUM_STEPS
sum = 0.0
x = a
for step in range(NUM_STEPS):

y = math.sqrt(x)
sum += y
x += DELTA_X

integral = sum * DELTA_X
print(integral)

Thus, the runtime of the Python program can be determined as follows:

time python3 integral.py

where integral.py is the name of the Python program. The same program can be implemented
in C as follows:

#include <math.h>
#include <stdio.h>
#define NUM_STEPS 1000000 // number of integration steps
#define a 1 // lower limit of integration
#define b 5 // upper limit of integration
#define DELTA_X (double)(b-a)/NUM_STEPS

int main()
{

Derek C. Schuurman 35

Exploring Computer Science with the Raspberry Pi

double sum = 0.0;
double y, integral;
double x = a;

for (int step = 0; step<NUM_STEPS; step++) {
y = sqrt(x);
sum += y;
x += DELTA_X;

}
integral = sum * DELTA_X;
printf("%f\n", integral);

}

This program can be compiled and the runtime determined as follows:

gcc -Wall integral.c -lm
time ./a.out

The runtime performance of a C program can sometimes be further tweaked by making suggestions
to the optimizer in the compiler. This can be done from the command line as follows:

gcc -Wall -Ofast integral.c -lm -o integral

The -Ofast command lime parameter instructs the gcc compiler to optimize for speed. Running
the program again with this compiler option should generally provide some slight improvements in
speed.

Finally, the same program can be implemented in the Java programming language as follows:

import java.lang.Math;

class Integrate {
public static void main(String args[])
{

final int NUM_STEPS = 1000000; // number of integration steps
final int a = 1; // lower limit of integration
final int b = 5; // upper limit of integration
final double DELTA_X = (double)(b-a)/NUM_STEPS;

double sum = 0.0;
double y, integral;
double x = a;
for (int step = 0; step<NUM_STEPS; step++) {

y = Math.sqrt(x);
sum += y;
x += DELTA_X;

}
integral = sum * DELTA_X;
System.out.println(integral);

}

Derek C. Schuurman 36

Exploring Computer Science with the Raspberry Pi

}

This program can be compiled and the runtime determined as follows:

javac integrate.java
time java Integrate

The algorithmused in this numerical integration is the same for all three of these programs. However,
the C program runs many times faster than Python due to the fact that it is compiled and runs using
native ARM instructions. Java provides “just in time compilation” and so adds overhead but runs
efficiently once the compilation is complete. As one can observe, runtime efficiency can sometimes
vary by orders of magnitude for different programming languages.

However, efficiency is just one consideration when selecting a programming language. Other con‑
siderations include maintainability, cost, interoperability, availability of tools, and community sup‑
port.

Derek C. Schuurman 37

Exploring Computer Science with the Raspberry Pi

3 Computer Organization and Assembly Language

3.1 Early Computers

One of the first concepts of a computer was developed by Charles Babbage in the mid 19th century.
Babbage created the concept of an “Analytical Engine” that could perform basic computations using
mechanical parts like gears, camshafts, and pinions. Babbage never completed the Analytical Engine,
but it’s design includedmany of concepts that were eventually incorporated into modern computers
like a store for intermediate results and a unit for performing arithmetic processing. Ada Lovelace
(daughter of LordByron)metBabbage at a party andwas intriguedby the ideaof his Analytical Engine.
She later published an account of how it might be used tomanipulate not just numbers, but symbols
of letters and musical notes. For this reason, Babbage is considered by some to be the “father of the
computer” and Ada Lovelace is often recognized as the first computer programmer. Moreover, the
official Raspberry Pi mascot is a bear named Babbage.

Figure 8: The author next to a portion of Charles Babbage’s Analytical Engine (on display at the
British Science Museum, London, England)

Derek C. Schuurman 38

https://www.raspberrypi.com/news/meet-babbage-the-bear/

Exploring Computer Science with the Raspberry Pi

3.1.1 The First Electronic Computers

The first general‑purpose programmable electronic digital computer was completed in 1946 and
called the ENIAC (Electronic Numerical Integrator And Computer). It was built by JohnMauchly and J.
Presper Eckert at the University of Pennsylvania for the U.S. military during World War II. It weighed
30 tons, occupied a 30‑by‑50 foot space, andwas powered by thousands of vacuum tubes. The ENIAC
was programmed by physically wiring interconnections between various components.

Figure 9: The ENIAC in a US Army Photo, 1946 (public domain) and a photo of the author posing next
to a section of the original ENIAC on display at the University of Michigan Computer Science
Department

Later, innovations in computer design led to the Von Neumann architecture, which enabled programs
to the be stored in memory. Computers could then be programmed without altering the physical
wiring of a computer by using software loaded into memory. This architecture was named after the
mathematician and computer pioneer, John von Neumann, who formalized this structure in the
1950s.

3.2 Modern Computer Organization

The organization of modern digital computer typically includes the following elements:

• a processing unit

Derek C. Schuurman 39

Exploring Computer Science with the Raspberry Pi

Figure 10: The von Neumann architecture.

• a control unit
• memory to store both data and instructions
• external storage devices
• input and output devices (I/O)

This basic architecture was first described by the computing pioneer John Von Neumann, and has
since come to be referred to as the Von Neumann architecture. This architecture uses a shared bus for
accessingbothprogram instructions anddata. Abus is a set of common (typically electrical) pathways
for sending data. A more complex architecture includes a separate bus for instructions and data and
is referred to as the Harvard Architecture.

In restof this chapter takesacloser lookateachof thecomponentsof thevonNwuemannarchitecture:
the processing unit in a modern computer, the memory, and the input and output (I/O).

3.3 The Processor

The processor, or Central Processing Unit (CPU), represents the heart of the organization of a com‑
puter. The processor carries fetches and carries out instructions and performs calculations.

The Raspberry Pi is a single‑board computer (SBC) built around an ARM processor (an acronym for
“Advanced RISC Machines”). The Raspberry Pi combines an ARM processor with memory and various
inputs and outputs as described by the von Neumann architecture. The inputs and outputs on the
Raspberry Pi include USB ports, an Ethernet port, WiFi, HDMI video output, and a general purpose I/O
(GPIO) port. Secondary storage is accomplished using amicro‑SSD card. The result is a small package
that fits in your hand and can run amodern Linux operating system.

A table summarizing the hardware specifications of some recent Raspberry Pi models is summarized
in the table below.

Model Processor CPU Clock RAM

Raspberry Pi 5 QUAD Core BCM2712 2.4 GHz 4GB or 8GB

Derek C. Schuurman 40

Exploring Computer Science with the Raspberry Pi

Model Processor CPU Clock RAM

Raspberry Pi 4 QUAD Core BCM2711 1.5 GHz 1GB, 2GB, or 4GB

Raspberry Pi 3B+ QUAD Core BCM2837B0 1.4 GHz 1 GB

Raspberry Pi Zero 2W QUAD Core BCM2710A1 1 GHz 512MB

To find information about the CPU on your Raspberry Pi, type:

more /proc/cpuinfo

This will display detailed information about each processor core. Another nifty utility to display a
useful summary of CPU information can be run by typing:

lscpu

Yet another utility is named hardinfo and can be installed as follows:

sudo apt install hardinfo

Once installed, running this utlity provides various hardware information along with a variety of
benchmarks for the CPU.

Drill Exercise: Use the lscpu utility to answer the following questions:

• what kind of CPU do you have?
• howmany cores does it have?
• what is the clock frequency?
• does the CPU support 64‑bit instructions?

The architecture of a processor can be understood as having various levels. The bottom level, or Dig‑
ital Logic Level, is comprised of the transistors that make up the logic gates used to implement the
processor. The layer above is the Microarchitecture Level, is built on the digital logic level and im‑
plements the instruction set. The microarchitecture level can be implemented directly in hardware
or it can be controlled by amicroprogram. Above that is the Instruction Set Architecture (ISA) level
which describes the set of instructions, registers, and operations a processor can perform which are
carried out by the microarchitecture. The Assembly Language Level provides a symbolic form for
the underlying level can be used to write programs.

In the following sections, we will take a lood at each of these levels in turn.

Derek C. Schuurman 41

Exploring Computer Science with the Raspberry Pi

Figure 11: Processor architecture levels.

3.3.1 The Digital Logic Level

Modern digital computers are now constructed using solid state electronics constructed using transis‑
tors. These transistors can be placed on integrated circuits, enabling billions of transistors to exist on
a single silicon chip.

Transistors canbeused to create thebasic buildingblocks of a computer: digital logic gates. TheRasp‑
berry Pi repositories includes a program for simulating digital logic called logisim. It can be installed
from the command line as follows:

sudo apt install logisim

The program generally functions well but but the project is no longer being actively developed. Two
alternative programs include logisim‑evolution and digital. Any one of these programs can be used
for experimenting and learning about digital logic. The interested read can begin by experimenting
with basic logic gates and building up to more complex digital circuits like adders, flip‑flops, and de‑
coders.

For an example of simulating an entire simple CPU architecture, the author has a paper titled Step‑by‑
step design and simulation of a simple CPU architecture. This simulation can be performed entirely
on a Raspberry Pi using logisim.

3.3.2 The Microarchitecture Level

A processor’s microarchitecture refers to its internal structure and how it fetches, decodes, and ex‑
ecutes instruction. A processor typically includes a control unit, registers, and an Arithmetic Logic

Derek C. Schuurman 42

https://github.com/logisim-evolution/logisim-evolution
https://github.com/hneemann/Digital
https://dl.acm.org/doi/10.1145/2445196.2445296?cid=81100321502
https://dl.acm.org/doi/10.1145/2445196.2445296?cid=81100321502

Exploring Computer Science with the Raspberry Pi

Unit (ALU). The microarchitecture also defines the pathways between registers, the control unit, and
the ALU. The pathway where data flows between registers and the ALU in a CPU is referred to as the
datapath. Themicroarchitecture includes any other functional units like pipelines, caches, and other
enhancements.

TheARMprocessorused in theRaspberryPi is actually amodifiedHarvardArchitecture since it includes
separate instruction and data caches, allowing the processor to behave like a Harvard architecture
when accessing the cache. However, behind the caches are shared buses for instructions and data.

The ARM processor is an example of a RISC (Reduced Instruction Set Computing) architecture, an
approach to processor design that emerged in the early 1980s as the result of research performed
at the University of California at Berkeley. The RISC architecture simplified the instruction set of a
processor so that the instructions could run faster and consume less power and space on the chip.
The RISC architecture stands in contrast to a CISC (Complex Instruction Set Computing) architecture,
which generally requires more power due to their more complex architectures.

Themicroarchitecture implements the Instrcution Set Architecture (ISA) in the level above, which de‑
fines oeprations which are visible to an assembly language prograamer. This level will be described
next.

3.3.3 The Instruction Set Architecture (ISA)

The Instruction Set Architecture (ISA) describes operations a processor can perform which are car‑
ried out by the microarchitecture. The Raspberry Pi uses an ARM processor, one that has its own In‑
struction Set Architecture (ISA). The ISA is a model that defines the set of instructions, registers, and
operations that a processor can perform. The ARM processor has two different Instruction Set Archi‑
tectures: a 32‑bit architecture referred to as ARM32, and a 64‑bit architecture referred to as ARM64.
The 64‑bit ISA is sometimes referred to as AArch64, and the 32‑bit ISA is sometimes referred to as
AArch32. Hence the Raspberry Pi OS has two different versions, a 32‑bit version and a 64‑bit version.
All recent versionsof theRaspberryPi (since 2016) support theARM64architecture, but arebackwards
compatible with ARM32, allowing you to to execute 32‑bit applications on ARM64 processors.

The ISA defines the instructions that form the assembly language level which is described in the next
section.

3.3.4 The Assembly Language Level

Assembly language is amachine‑specific programming language with a one‑to‑one correspondence
between its statements and the computer’s native machine language. Programs written in Assembly
Language are translated into the native Machine Language using an Assembler. Assembly language

Derek C. Schuurman 43

https://www.arm.com/products/silicon-ip-cpu
https://developer.arm.com/Architectures/A32%20Instruction%20Set%20Architecture
https://developer.arm.com/Architectures/A64%20Instruction%20Set%20Architecture

Exploring Computer Science with the Raspberry Pi

programming is difficult since it takes longer to write, is more difficult to code, debug, and maintain.
Assembly Language is helpful when learning about computer organization and architecture. In the
case of the Raspberry Pi, ARM assembly language requires understanding some of the basics of the
ARM architecture. Furthermore, assembly language can be useful to bypasses restrictions and limi‑
tations of higher level languages and for high‑speed or time‑critical applications that require direct
communication with hardware.

To begin editing an assembly language program, type the following:

nano program1.s

The assembly code you enterwill vary depending onwhether you are running a 64‑bit or 32‑bit OS. To
determine which version of the Raspberry Pi OS you are running, simply type:

uname -m

aarch32 indicates a 32‑bit OS and aarch64 indicates a 64‑bit OS. Assuming a 64‑bit OS, enter the
assembly language program as follows:

// ARM64 Assembler program to print a greeting
.data
message: .ascii "Hello World!\nAssembled for a 64-bit Raspberry Pi.\n"
.text
.global _start
_start:
// Linux system call to print message

mov w0, #1 // File descriptor 1 (stdout)
ldr x1, =message // Load address of message
mov w2, #57 // Message length
mov w8, #64 // system call for write operation
svc #0 // perform system call

// Linux system call to terminate program
mov w0, #0 // Return code 0 (success)
mov w8, #93 // exit system call
svc #0 // terminate program

An ARM32 version of the same programwould appear as follows:

@ ARM32 Assembler program to print a greeting
.data
message: .ascii "Hello World!\nAssembled for a 32-bit Raspberry Pi.\n"
.text
.global _start
_start:
@ Make a Linux system call to print the message

mov r0, #1 @ File descriptor 1 (stdout)
ldr r1, =message @ Load message address into r1
mov r2, #57 @ Length of message in bytes

Derek C. Schuurman 44

Exploring Computer Science with the Raspberry Pi

mov r7, #4 @ System call number 4 (write)
svc 0 @ perform system call

@ Make Linux system call to terminate program
mov r0, #0 @ Return code 0 (success)
mov r7, #1 @ System call number 1 (exit)
svc 0 @ perform system call

One key difference between these two listings is the symbols used to denote comments, with the 32‑
bit code using an @ symbol and the 64‑bit code using the more traditional double slashes (//). I find
this difference in assembler syntax puzzling, but the more significant differences are related to the
difference in the ARM32 and ARM64 architectures. One of the key differences in the instruction set
architecture is apparent by comparing the register names in these two programs. For the ARM32 ISA,
there are thirteen 32‑bit general purpose registers named r0-r12 and the ARM64 ISA has 31 general
purpose registers named x0-x30whose bottom 32‑bits are named w0-w30. Another key difference
between 32‑bit and 64‑bit Linux is the system call numbers. As an example, the exit system call for
ARM32 is performed by placing a 1 in r7 and for ARM64 a 93 is placed in x8. In addition, there are
various other differences to both registers and instructions.

At this point we can assemble, link, and run the program by typing the following sequence of com‑
mands:

as -o program1.o program1.s
ld -o program1 program1.o
./program1

If everythingwas entered correctly, your programshould runandyou should see amessagedisplayed.
Next, type the following command to view your resulting object file:

objdump -S program1.o

The second part of the output will display a disassembly of the program, showing the machine code
(in hexadecimal) alongside the corresponding assembly instructions.

Notehowmanyprimitive instructions are required todisplay a simplemessage in assembly language!
To read more about ARM assembly language, see the Introduction to Assembly Language on the de‑
veloper webpages for ARM.

3.4 Memory

There are basically two large categories of memory: ‑ Volatile memory: storage that only maintains
its data while the device is powered ‑ Non‑volatile memory: storage that preserves contents when
power is off

Derek C. Schuurman 45

https://developer.arm.com/documentation/den0013/d/Introduction-to-Assembly-Language

Exploring Computer Science with the Raspberry Pi

3.4.1 Volatile Memory

There are two general categories of volatile memory:

• SRAM: static random‑access memory

– fast access time
– typically more power hungry
– typically used for caches and small embeddedmemories

• DRAM: dynamic random‑access memory

– slower than SRAM
– denser (less costly) than SRAM
– requires periodic refreshes (typically every 64msec)
– often used for main memory

The Raspberry Pi utilizes SRAM for cachememory and its main memory is composed of DRAM.

3.4.2 Non‑Volatile Memory

There are a variety of types of non‑volatile memory:

• EPROM: erasable programmable read only memory

– erased by exposing the chip to strong UV light, making field updates difficult
– older technology

• EEPROM: electrically erasable programmable read‑only memory
• Flashmemory and SSD

– Erased a “block” at a time
– Limited number of program/erase cycles

• Magnetic Disk drives

– Not well‑suited for embedded systems

• Magnetic Tape storage

– used for backup of large amounts of data

TheRaspberryPi hasanSDcardwhich ismade from flashmemorywhich comprises its secondary stor‑
age. Many mobile and embedded systems rely on flash memory. Flash memory devices have unique
characteristics for writing: memory blocks have to be explicitly erased before they can be written to.

Derek C. Schuurman 46

Exploring Computer Science with the Raspberry Pi

Unlike magnetic drives that have seek latencies due to the delays in the rotation of the disk to bring
the required disk sector under the read‑write head. In contrast, flashmemory has no seek latency and
have the advantage of random access. However, flashmemories have a finite number of erase cycles,
so they canwear out when a single block is repeatedly overwritten. To address this, flash file systems
can implement “wear leveling” to spread out writes evenly among the memory blocks. An example
of a file system that deals with this is F2FS (Flash‑Friendly File System), which is designed specially for
the characteristics of flash memory

Flashmemories canbe corrupted if power if removedduring awrite operation. ThegreenLEDon
the Raspberry Pi indicates when the SD card is being accessed, so do not remove power until the
green LED stops flashing. Once Linux has completely shut down and the green LED has stopped
flashing, you may unplug the power supply. Always perform a sudo halt before removing
power from your Raspberry Pi.

To display details about the Raspberry Pi’s memory, type:

more /proc/meminfo

Drill Exercise: Use the meminfo utility to determine:

• what is the total memory?
• howmuch free memory is available?
• howmuch swap space is allocated?

3.5 Inputs and Outputs (I/O)

The Raspberry Pi has general purpose I/O pins, referred to as GPIO pins, which can be configured as
digital inputsoroutputs. Todisplay thepinoutsof theGPIOport type the following fromthecommand
line:

pinout

The output should show various pinouts on the Raspberry Pi, including the GPIO headers, and should
appear something like the following:

3V3 (1) (2) 5V
GPIO2 (3) (4) 5V
GPIO3 (5) (6) GND
GPIO4 (7) (8) GPIO14

GND (9) (10) GPIO15
GPIO17 (11) (12) GPIO18
GPIO27 (13) (14) GND
GPIO22 (15) (16) GPIO23

Derek C. Schuurman 47

Exploring Computer Science with the Raspberry Pi

3V3 (17) (18) GPIO24
GPIO10 (19) (20) GND
GPIO9 (21) (22) GPIO25
GPIO11 (23) (24) GPIO8

GND (25) (26) GPIO7
GPIO0 (27) (28) GPIO1
GPIO5 (29) (30) GND
GPIO6 (31) (32) GPIO12
GPIO13 (33) (34) GND
GPIO19 (35) (36) GPIO16
GPIO26 (37) (38) GPIO20

GND (39) (40) GPIO21

Some of these GPIO pins can also be reconfigured for special purposes, such as for PulseWidthModu‑
lation (PWM)or serial communications. For amore elaborate display of theRaspberry Pi GPIOpinouts
and their special functions, visit the website pinout.xyz.

Note that extreme care should be taken when connecting to GPIO ports. Interfacing
the pins improperly, exceeding voltage input ratings, or shorting out certain pins can
damage or destroy the Raspberry Pi!

TheGPIO pins can be controlled as simple inputs or outputs using a command line tool. They can also
be controlled fromwithin a program (which will be explored further in chapter 7). As an example, we
can set GPIO12 to act as an input from the command line as follows:

raspi-gpio set 12 ip

We can also turn on aweak internal “pull up” resistor using thepu parameter. This ensures that when
the pin is unconnected the input value “floats” high.

raspi-gpio set 12 pu

Alternately, we can turn on aweak internal “pull down” resistor using the pd parameter. This ensures
that when the pin is unconnected the input value “floats” low.

raspi-gpio set 12 pd

We can read the input state using the gpio command on GPIO12 as follows:

raspi-gpio get 12

We can repeatedly call this command to monitor any changes to the input and observe the state of
the input pin. To learn more about the gpio utility, type:

raspi-gpio help

Derek C. Schuurman 48

https://pinout.xyz/

Exploring Computer Science with the Raspberry Pi

In a similar manner, we can use the command line to control digital outputs. For example to set
GPIO16 as an output, we can enter the following command:

raspi-gpio set 16 op

Next, if we want to set the output of GPIO16 high, we issue the following command:

raspi-gpio set 16 dh

Likewise, the command to set GPIO16 low is:

raspi-gpio set 16 dl

Derek C. Schuurman 49

Exploring Computer Science with the Raspberry Pi

4 The Linux Operating System

An operating system is software to control the hardware of a computer. The Raspberry Pi runs with
the Raspberry Pi OS, a variant of the free Linux operating system originally written by Linus Torvalds
when he was a graduate student at the University of Helsinki in Finland. Linux is inspired by the Unix
operating system, first developed in 1969 at AT&T’s Bell Labs, and is part of the long history of Unix‑
like operating systems (see the figure below). But unlikeUnix, Linux is completely free anddistributed
under the GNU general public license (GPL). Linux aims to be POSIX (Portable Operating System Inter‑
face) compliant, a standard for Unix‑like operating systems. Linux has grown over time with support
from developers around the world and continues to grow increasingly popular, being found not only
in desktops and servers, but smartphones and tablets, embedded systems, and in factory automation
systems.

System III & V family

BSD (Berkeley Software Distribution)

FreeBSD

NetBSD

OpenBSD

SunOS

Solaris

NextStep

Xenix OS

GNU

Linux

Commercial UNIX

HP-UX

AIX

UnixWare

IRIX

BSD family

1970 1980 1990 2000 Time

Microsoft/SCO

Richard Stallman

Darwin

GNU/Hurd

Linus Torvalds

Andrew S. Tanenbaum

Minix

3.3

6.5.30

4.1.4

Research UNIX 10.5

Bell Labs: Ken Thompson,
Dennis Ritchie, et al.

Bill Joy

AT&T

IBM

SGI

Univel/SCO/Xinuos

2010

4.4

7.0

12.2

macOS 11.6

9.2

11.4

7.2

11i v3

5.15

3.4

21.0

Sun/Oracle

Apple

Theo de Raadt

0.9

Matthew Dillon

DragonFly BSD 6.0

2020

7

Figure 12: History of Unix‑like operating systems and Linux (public domain image)

Derek C. Schuurman 50

https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.opengroup.org/austin/papers/posix_faq.html
https://www.opengroup.org/austin/papers/posix_faq.html

Exploring Computer Science with the Raspberry Pi

4.1 Introduction

In simple terms, an Operating System (or OS) makes computing power available to users by control‑
ling the hardware resources. In general, an OS is responsible for the following functions:

• Process Management: process creation, scheduling, switching, and synchronization
• Memory Management: allocation, swapping, page management
• File Management: accessing and organizing files and directories on a secondary storage device
• Input/Output (I/O) Management
• Other Support functions: accounting, monitoring, updates

4.2 Process Management

A process is a program in executionwhich ismanaged by the OS. Modern operating systems like Linux
aremultitaskingwhich allows for the interleaved execution of two or more processes on a single pro‑
cessor.

The execution of different processes is controlled by the Dispatcher. The Dispatcher is a program that
switches execution from one process to another. The main job of the Dispatcher is to ensure that the
processor time is allocated appropriately to all the processes that are active.

A process is normally represented by a Process Control Block (PCB), a data structurewithin theOS that
contains information such as the process ID, its state, and other information required by the OS.

Linux is not only a multitasking OS, it is also amultiprocessor OSwith support for systems with multi‑
ple processors or cores.

4.2.1 Tools for Managing Processes

What is a process? The following table lists some terminal commands related to processes:

Command Description

ps Display a list of processes

kill <pid> Terminate the process with process ID <pid>

htop Observe all processes running on the system

Derek C. Schuurman 51

Exploring Computer Science with the Raspberry Pi

4.2.2 Example Program to fork a new process

A process which spawns another process is called a parent and the new process is called a child. In
Linux, new processes may be started using one of several C library functions as summarized in the
table below.

System call Description

system() executes a shell command string and waits for it to be
completed

exec() replaces the current process with another

fork() duplicates the current process

A sample C programming demonstrating creating a child process using a call to fork is shown be‑
low:

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main()
{

pid_t pid; /* Process ID */
pid = fork(); /* Call to fork a child */

switch (pid) { /* check for parent or child process*/
case -1:

printf("Unable to create process");
exit(1);
break;

case 0:
printf("Child Process started...\n");
break;

default:
printf("This is the Parent Process...\n");
break;

}
return 0;

}

4.3 Parallel Computation

There are different forms of parallel computing and these can be explored with the Raspberry Pi. Pro‑
grams can run concurrently on a single CPU as it switches between tasks, or it can make use of mul‑

Derek C. Schuurman 52

Exploring Computer Science with the Raspberry Pi

tiple CPU cores. A computation can be also distributed across multiple computers, as is the case in
computing clusters. The following sections explore different types of parallel computing.

4.3.1 Multithreaded programming

Multithreading refers to the ability of an OS to support multiple threads of execution within a single
process. A thread is like a process that is independently scheduled but it shares the address space
with other threads in a process.

To runa thread inJava, implementa class that extends theThread class as illustrated in the following
example code.

public class Main
{
public static void main (String[]args) {

HelloThread t1 = new HelloThread ("Bob");
HelloThread t2 = new HelloThread ("Larry");
t1.start ();
t2.start ();

}
}

class HelloThread extends Thread
{

private String name;

public HelloThread (String aName) {
name = aName;

}

public void run () {
for (int i = 0; i < 10; i++) {

try
{

System.out.println ("Hello " + name);
sleep (1000); // Wait one second

}
catch (InterruptedException exception)
{ }

}
}

}

Python also includes support for multithreading. However, Python uses something called a GIL
(Global Interpreter Lock) which requires that only one thread can run at a time. Hence, Pythonmulti‑
threading will interleave different threads of execution but cannot be used to perform computations
in parallel.

Derek C. Schuurman 53

Exploring Computer Science with the Raspberry Pi

4.3.2 Multiprocessing

Another approach is to usemultiprocessing, a feature of the Linux operating systemwhich can exploit
the multiple cores typically found in modern processors like the ARM processor. A core is an indepen‑
dent processing unit that can be scheduled by the operating system. By running on multiple cores,
it is possible to increase the speed of execution by looking for opportunities to parallelize execution.
The Raspberry Pi 3, 4, and 5 include four ARM cores that we can be used to parallelize execution. In
general, the speedup,𝑆, that can be achieved from running a task in parallel is given byAmdahl’s law
as follows:

𝑆 = 1
(1 − 𝑝) + 𝑝

𝑁

where 𝑝 represents the proportion of execution time that can be parallelized and 𝑁 represents the
number of processors. Hence, with a four core processor (𝑁 = 4) and a program which can be fully
parallelized (𝑠 = 1), the theoretical speedup should be four times. In reality, the theoretical speedup
is never achieved due to the overhead of managing parallel processes.

Related to Amdahl’s law is Gustafson’s law, which can be described as:

𝑆 = 𝑠 + 𝑝𝑁 = 𝑠 + (1 − 𝑠)𝑁 = 𝑁 + (1 − 𝑁)𝑠

where 𝑆 is the theoretical speedup of the program, 𝑁 is the number processors, and 𝑠 and 𝑝 are the
fractions of time spent on the serial and parallel portions of a task respectively.

Recall the example of numerical integration illustrated in Figure 7. As it turns out, numerical integra‑
tion is an example of an embarrassingly parallel algorithm— one that is trivial to parallelize because
the area can be broken down into separate chunks that are computed independently. Recall that
numerical integration can be approximated using the Riemann summation follows:

∫
𝑎

𝑏
𝑓(𝑥) 𝑑𝑥 ≈

𝑛−1
∑
𝑖=0

𝑓(𝑥𝑖)Δ𝑥

where Δ𝑥 = 𝑏 − 𝑎
𝑛 . We could easily parallelize this integration over the range [𝑎, 𝑏] by subdividing it

into four separate summations as follows:

𝑛−1
∑
𝑖=0

𝑓(𝑥𝑖)Δ𝑥 =
𝑥

∑
𝑖=0

𝑓(𝑥𝑖)Δ𝑥 +
𝑦

∑
𝑖=𝑥+1

𝑓(𝑥𝑖)Δ𝑥 +
𝑧

∑
𝑖=𝑦+1

𝑓(𝑥𝑖)Δ𝑥 +
𝑛−1
∑

𝑖=𝑧+1
𝑓(𝑥𝑖)Δ𝑥

such that 0 < 𝑥 < 𝑦 < 𝑧 < 𝑛 − 1. Each of the above summations can run independently as parallel
processes and the final answer can be obtained by summing the results of each.

Derek C. Schuurman 54

Exploring Computer Science with the Raspberry Pi

4.3.2.1 Parallel Execution in Python Next, we will implement a program that computes these
summations in parallel using each of the four cores on a Raspberry Pi. This can be implemented in
Python using the multiprocessing module as follows:

from multiprocessing import Pool
import math

PROCESSES = 4 # number of processes
NUM_STEPS = 1000000 # total number of integration steps
a = 1 # lower limit of integration
b = 5 # upper limit of integration

def integrate_sqrt(a,b,n):
''' integrate sqrt(x) over[a,b] in n steps
'''
sum = 0.0
x = a
delta_x = (b-a)/n
for step in range(n):

y = math.sqrt(x)
sum += y
x += delta_x

return sum * delta_x

if __name__ == '__main__':
start a pool of worker processes split over [a,b]
with Pool(processes=PROCESSES) as pool:

subrange = (b-a)/PROCESSES
integrals=pool.starmap(integrate_sqrt,

zip([a+x*subrange for x in range(PROCESSES)],
[a+x*subrange for x in range(1,PROCESSES+1)],
[int(NUM_STEPS/PROCESSES)]*PROCESSES))

print(sum(integrals))

Using the above code runningon four processing cores available onour Raspberry Pi, we runand time
the program as follows:

time python3 parallel_integral.py

We should observe a speedup of roughly four times over the sequential implementation given in sec‑
tion 2.4.1. Note that the speedup will not be exactly four times faster due to the finite overhead in
creating andmanaging four new processes.

4.3.2.2 Parallel Execution in C There are a variety of libraries that can be used to perform mul‑
tiprocessing in Linux using the C programming language. In this example we will use the OpenMP
library. Some sample code is shown below:

Derek C. Schuurman 55

https://docs.python.org/3/library/multiprocessing.html
https://www.openmp.org

Exploring Computer Science with the Raspberry Pi

#include <stdio.h>
#include <math.h>
#include <omp.h>

#define NUM_STEPS 10000000 // number of integration steps
#define a 1 // lower limit of integration
#define b 5 // upper limit of integration
#define DELTA_X (double)(b-a)/NUM_STEPS

int main()
{

int step;
double total_integral = 0.0;
double sum;
double y, integral;
double x;

printf("Number of cores: %d\n", omp_get_num_procs());
#pragma omp parallel private(sum,x,y,integral)
{

sum = 0.0;

// parallelize this chunk of code
#pragma omp for
for (step = 0; step<NUM_STEPS; step++) {

x = (double)a + (double)(b-a)*(double)(step)/NUM_STEPS;
y = sqrt(x);
sum += y;

}
integral = sum * DELTA_X;

#pragma omp critical
{

total_integral += integral;
}

}
printf("%f\n", total_integral);
return 0;

}

This program can be compiled and the runtime determined as follows:

gcc -Wall -fopenmp integral.c -lm
time ./a.out

Once again, we can observe that there is a speedup over the sequential C code that was given in sec‑
tion 2.4.1.

Derek C. Schuurman 56

Exploring Computer Science with the Raspberry Pi

4.3.2.3 Parallel Execution on a Graphics Processing Unit (GPU) Additional speedup can also be
realized by utiliziing a GPU (Graphical Processing Unit). The Raspberry Pi’s Broadcom ARM proces‑
sor includes an on‑chip graphics processing unit (GPU). There are standard libraries for taking advan‑
tage of GPUs, such as OpenCL and CUDA, but, as of the time of writing, programming support for the
Raspberry Pi GPU is limited. Search the Raspberry Pi forums for more up‑to‑date information about
programming with the GPU.

4.3.3 Parallel and Distributed Computing with the Raspberry Pi

The Raspberry Pi can also be used to teach and explore parallel and distributed computing (PDC).
These topics can be explored using the Raspberry Pi with free, interactive, web‑based PDC teaching
modules.

For more infomation, consult the following links:

• Hands‑on parallel & distributed computing with Raspberry Pi devices and clusters
• Distributed Computing Using Python and the Raspberry Pi
• Curriculum Initiative on Parallel and Distributed Computing – Core Topics for Undergraduates
• CSinParallel

4.4 File and Memory Management

4.4.1 Memory Management

Memory management is the task of dynamically subdividing memory to accommodate multiple pro‑
cesses. To view the state of the memory, type:

free -h

The output of this command includes the size of the swap memory, which is part of the virtual
memory system. Virtual memory uses secondary storage to extend the main memory by temporarily
swapping pages of memory in and out. Many virtual memory management settings are available via
the /proc/sys/vm/ folder. To see the settings that are available, consult the documentation for
/proc/sys/vm/.

4.4.2 File Management

File management in Linux supports accessing, manipulating, and protecting files and directories on
a secondary storage device. Linux uses a hierarchical file system structure which is organized into

Derek C. Schuurman 57

https://www.khronos.org/opencl/
https://developer.nvidia.com/cuda-zone
https://forums.raspberrypi.com
https://doi.org/10.1016/j.jpdc.2024.104996
https://www.learnpdc.org/RaspberryPi-mpi4py/
https://doi.org/10.1145/3545947.3569594
https://csinparallel.org
https://docs.kernel.org/admin-guide/sysctl/vm.html
https://docs.kernel.org/admin-guide/sysctl/vm.html

Exploring Computer Science with the Raspberry Pi

files and directories within the root file system. Some of the shell commands for manipulating and
accessing files are summarized in the table below.

Command Description

cd directory Changes the current working directory to directory

pwd Displays the name of the current working directory

mkdir directory Create a new directory called directory

rmdir directory Removes the directory called directory

ls Display a list of files in the current directory

cp f1 f2 Copy a file from the source f1 to the destination f2

rm filename Remove a file filename

mv f1 f2 Move a file from f1 to f2

df Report the amount of free disk space available

du Report the amount of disk usage

find path conditions Utility for finding files

locate search‑string Utility for locating files

chmod Utility for modifying file permissions

chown Utility for modifying file ownership

Linux has support for magnetic hard drives, solid‑state drives (SSDs), as well as USB drives. While
Linux supports a variety of different file system types, the most common type is the Ext4 file system,
which replaced the older Ext3 file system. Ext4 is a high performance journaling file system,meaning
that it keeps a “journal” to keep track of changes before those changes aremade to prevent data loss
if a crash occurs during a data write.

To create a new Ext4 file partition, type:

sudo mkfs.ext4 /dev/partition

where /dev/partition is the partition you want to create. The features of the Ext4 file sys‑
tem can be viewed by looking at the /etc/mke2fs.conf configuration file. This file indicates
which features are enabled along with settings like the default blocksize, inode_size, and
inode_ratio. An inode represents an index node, which is the data structure that is used to store
information about a file or directory.

Derek C. Schuurman 58

Exploring Computer Science with the Raspberry Pi

Note: Using the mkfs.ext4 command needs to be done with caution since it will wipe any
existing data on the partition!

4.4.2.1 Overlay File Systems An OverlayFS is a feature in the Linux kernel which allows a union
filesystem in which one filesystem is overlaid on top of another. For example, this allows an SD card to
bemounted read‑only and overlaid with a ramdisk that can be used to writing (although data written
to a ramdisk is lost when device is turned of or reboots). This is used in containerization technologies
like Docker.

4.5 Controlling Inputs and Outputs

4.5.1 Software I/O Strategies

There are basically three strategies generally used for servicing I/O:

1. ProgrammedI/O: theCPUpolls for completion for each I/Ooperation. This is a time‑consuming
task for the CPU. An example of programmed I/O for reading a switch connected to a GPIO input
is given below. Note the continuous loop that constantly monitors the input state.

from gpiozero import Button

Create a Button object with pull_up=True
button = Button(12, pull_up=True)
previous_state = False # Keeps track of the last button state

try:
while True:

is_active will be True when button is pressed
if button.is_active and previous_state == False:

print('Button press')
previous_state = True

Check if button is released
if not button.is_active and previous_state == True:

print('Button release')
previous_state = False

except KeyboardInterrupt:
pass

2. Event‑driven I/O: CPU can execute code during I/O operation but gets notified when I/O opera‑
tion is doneusing eventsand callback functions. Anexampleof aprogramusinganevent‑driven
input.

Derek C. Schuurman 59

https://www.docker.com/

Exploring Computer Science with the Raspberry Pi

from gpiozero import Button
from signal import pause

button = Button(12, pull_up=True)
count = 0

def count_press():
global count
count += 1
print(count)

Trigger a callback whenever the button is pressed
button.when_pressed = count_press

try:
pause()

except KeyboardInterrupt:
pass

3. DirectMemoryAccess (DMA): allow theperipherals todirectly communicateusing thememory
bus, removing the intervention of the CPU

4.5.2 The General Purpose Input and Output (GPIO) Pins

The Raspberry Pi includes a variety of inputs and outputs that are controlled by the operating system.
These incude a camera input, USB inputs, HDMI, and a bank of pins named theGPIO (General Purpose
I/O) pins.

GPIO pins can be configured as digital inputs or digital outputs. Furthermore, digital inputs can be
configured with a weak “pull up” resistor or a weak “pull down” resistor. Likewise, digital inputs can
be further configured to detect rising edges, falling edges, or both, and fire an event.

Some digital outputs can be optionally configured as PWM (pulse width modulation) outputs. Note
that there are no analog‑to‑digital inputs on the GPIO port.

4.5.3 Reading and Setting GPIO Pins

The Raspberry Pi is equipped with a variety of GPIO (General Purpose I/O) pins that can be used for
controlling or sensing signals to or from the outside world. It also has a dedicated camera port.

You can view a diagram of the GPIO port and each the pins from the command line by typing the
following command:

pinout

Derek C. Schuurman 60

Exploring Computer Science with the Raspberry Pi

The output from this command will show all 40 GPIO pins with the signal names next to each as fol‑
lows:

3V3 (1) (2) 5V
GPIO2 (3) (4) 5V
GPIO3 (5) (6) GND
GPIO4 (7) (8) GPIO14

GND (9) (10) GPIO15
GPIO17 (11) (12) GPIO18
GPIO27 (13) (14) GND
GPIO22 (15) (16) GPIO23

3V3 (17) (18) GPIO24
GPIO10 (19) (20) GND
GPIO9 (21) (22) GPIO25
GPIO11 (23) (24) GPIO8

GND (25) (26) GPIO7
GPIO0 (27) (28) GPIO1
GPIO5 (29) (30) GND
GPIO6 (31) (32) GPIO12
GPIO13 (33) (34) GND
GPIO19 (35) (36) GPIO16
GPIO26 (37) (38) GPIO20

GND (39) (40) GPIO21

Before wiring the GPIO ports, remember to turn off power to the Raspberry Pi. It is always prudent
to check your wiring to ensure you are accessing the correct pin and that there are no exposed leads
touching each other as this could cause short circuits. It is important to make sure you are properly
interfacing with external sensors and actuators to ensure you comply with the electrical limits of the
GPIO ports.

Youcan test yourGPIOconnectionsusing theraspi-gpio command lineutility. To readall theGPIO
pins, type the following:

raspi-gpio readall

This should display the state of all the GPIO pins. Note that there are several different pin numbering
schemes that can be usedwith the Raspberry Pi, which can lead to some confusion. Note that wewill
be using the BCM numbering scheme. BCM represents the Broadcom SOC channel and reflects the
numbering scheme used by the Broadcom ARM processor and the raspi-gpio utility.

For information on contolling GPIO pins, see section 7.2.

Derek C. Schuurman 61

Exploring Computer Science with the Raspberry Pi

4.6 Other OS Support Functions

4.6.1 Logfiles

A variety of log files are kept in the folder /var/logwhich keep track of the state of the system. Use
the tail command to read the latest log entries as follows:

tail syslog

Viewing logfile is useful for troubleshooting.

4.6.2 Updating the Operating System

Part of keeping anoperating systemsecure is to ensure that it is kept up todatewith the latest updates
and patches. Un‑patched security issues can become attack vectors for malicious hackers. To view
somecurrent security vulnerabilities, visit theNISTNational VulnerabilityDatabase. This is evenmore
critical for a system that is connected to a network such as an IoT device. In fact, IoT devices must
remain up‑to‑date after they are deployed in the field for the entire life‑timeof the product! To update
the Raspberry Pi from the command line, use the following commands:

sudo apt update
sudo apt full-upgrade

After performing an update, youmaywant to clear space by removing any packages that are obsolete
or are no longer required:

sudo apt autoremove

Furthermore, you can clean any files left behind during the update process by using the following
command:

sudo apt clean

4.6.2.1 Enabling Automatic Updates Rather than typing this command each day, one approach
is to use a program to automate updates. There are several ways to accomplish this in Linux. One
approach is to use a special package for automatic updates named unattended-upgrades. To
install this package, type:

sudo apt install unattended-upgrades

Next, edit the configuration file as follows:

sudo nano /etc/apt/apt.conf.d/50unattended-upgrades

Derek C. Schuurman 62

https://nvd.nist.gov/vuln

Exploring Computer Science with the Raspberry Pi

This will open a configuration file to setup unattended updates. Remove the double slashes (//) in
front of the following lines in the configuration file to enable various automatic updates:

"origin=Debian,codename=${distro_codename}-updates";
"origin=Debian,codename=${distro_codename},label=Debian";
"origin=Debian,codename=${distro_codename},label=Debian-Security";
"origin=Debian,codename=${distro_codename}-security,label=Debian-Security"

;

To save the file, type ctrl‑x and select “yes” to save and exit. Finally, ensure automatic updates are
enabled by running:

sudo dpkg-reconfigure unattended-upgrades

At this point, automatic updates should be enabled to run daily.

4.6.3 Securing your Raspberry Pi

TheRaspberry Pi is like anyother networked computer—with all thewonderful possibilities aswell as
the threats. While physical security of a computing device is one consideration, once it is connected
to a network a whole new set of vulnerabilities arise. For this reason, it is prudent to follow basic
procedure for system hardening to reduce the vulnerability of your Raspberry Pi.

The first step is to disable all unnecessary services that are running. Each service expands the possi‑
ble attack surface and exposes new vulnerabilities. This is particularly true of programs that open
networking ports that are accessible by other computers. To obtain a list of all the services running
on a Raspberry Pi, type:

systemctl --type=service --state=running

If any of these services are not required, it can be stopped and disabled from starting up on subse‑
quent reboots as follows:

systemctl disable --now service-name

where service-name is the name of the service you wish to stop.

In addition, theRaspberryPiOScomeswithawhole setof tools andutilities tohelp secure yourdevice
through intrusion detection and prevention.

4.6.3.1 Virus Scanning There is an open source virus scanning programcalledClamAV that canbe
used to scan your Raspberry Pi for viruses. To install clamav, type:

sudo apt-get install clamav

Derek C. Schuurman 63

Exploring Computer Science with the Raspberry Pi

Before you can start scanning for viruses, an updated ClamAV virus signature database must be
installed. A tool called freshclam is used to download and update this database. First, the
freshclam configuration file must be setup properly by editing:

sudo nano /etc/clamav/freshclam.conf

Once the configuration file is in place, frashclam can be run by typing:

sudo freshclam

Once the virus signature database is update, the whole hard drive can be scanned as follows:

clamscan -r -i --bell /

4.6.3.2 Scanning for Root‑kits Another utility provides the ability to scan for known root‑kits. A
root‑kit is a program that enables an unauthorized user to gain control of a computer system. To
install the chkrootkit, type:

sudo apt-get install chkrootkit

Next, we can scan for root‑kits as follows:

sudo chkrootkit

To display only warnings and suspected infected files, type: bash sudo chkrootkit -q

4.6.3.3 fail2ban If you are connecting to your Raspberry Pi using SSH, you are susceptible to both
brute force attacks and dictionary attacks. A brute force attack connects the the SSH port and tries
cracking a password using different combination of characters. A dictionary attack connects to an
SSH port and attempts to log in using a list of common passwords.

The fail2ban utility is an intrusion prevention system that monitors the SSH port (as well as other
ports) for repeated unsuccessful login attempts. If a particular client exceeds a certain threshold of
failed login attempts, its IP address is blocked.

To install fail2ban, type:

sudo apt install fail2ban

To protect the Raspberry Pi from SSH attacks, edit the configuration file located at/etc/fail2ban
/jail.d/defaults-debian.conf. This file should contain at least the following settings for
SSH:

[sshd]

Derek C. Schuurman 64

Exploring Computer Science with the Raspberry Pi

enabled = true

The configuration file can be used to fine‑tune others settings. For example, you can configure the
maximum allowable login retries and the time that an IP address is banned as follows:

[sshd]
enabled = true
filter = sshd
maxretry = 5
bantime = 600

4.6.4 Setting up a Print Server

Printing in Linux is typically done using CUPS (Common Unix Printing System). CUPS enables you to
use your Raspberry Pi as a print server which can allow you to share a printing device with others on
your local network. To begin, install CUPS on the Raspberry Pi, type:

sudo apt install cups

Next, add the default user, pi, to the group of users that can access the printer:

sudo usermod -a -G lpadmin pi

A variety of CUPS settings can be modified in the file /etc/cupsd/cupsd.conf to enable oper‑
ation of a CUPS server (and to adjust access control). The server incudes a web interface to view
print jobs and administer the printers. Once running, the web interface can be accessed by point‑
ing a browser to the IP address of the Raspberry Pi followed by :631. For example, if the Raspberry
Pi is located at IP address 192.168.1.1, you should point your browser to 192.168.1.1:631.
Consult the online CUPS documentation for more information.

4.7 Compiling the Linux Kernel

Using thegcc tool chain, it is also possible to customize and recompile the Linux kernel itself! Before
beginning, install the git tool along with other build dependencies:

sudo apt install git bc bison flex libssl-dev make libncurses5-dev

Next, use git to download the kernel source code as follows:

git clone --depth=1 https://github.com/raspberrypi/linux

Note that omitting the depth parameter will download the entire repository history and will take a
very long time! The next step is to prepare the default configuration of the kernel. For a 64‑bit kernel

Derek C. Schuurman 65

https://www.cups.org/documentation.html

Exploring Computer Science with the Raspberry Pi

on a Raspberry Pi 4 this is done as follows:

cd linux
KERNEL=kernel8
make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- mrproper
make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- bcm2711_defconfig

Setting KERNEL=kernel8 selects the 64‑bit kernel for the ARM processor. In the commands above,
kernel8 and bcm2711_defconfig refer to the kernel filename and build target respectively for
the Raspberry Pi 4. If you are using a different model of the Raspberry Pi, you will need modify these
commands with a different a different kernel filename and build target as summarized below:

Model Default kernel filename Config build target

Raspberry Pi Zero kernel.img bcmrpi_defconfig

Raspberry Pi 2, 3, 3+ kernel7.img bcm2709_defconfig

Raspberry Pi 4 kernel8.img b cm2711_defconfig

If you are not sure which model you are using, it should be printed on the Raspberry Pi circuit board,
otherwise you can query your device model as follows:

cat /proc/device-tree/model

After running the appropriatemake command, a.config filewill be generatedwith various settings
for your particular Raspberry Pi model. These kernel settings can be customized according to your
wishes and requirements. To make changes to these kernel setting we can use the makemenu utility
as follows:

make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- menuconfig

This utility essentially provides a friendly interface to modify numerous configuration settings stored
in the .config file. These settings will later be used to guide the compilation process to produce a
customized kernel image.

For example, one simple customization thatmightbemade is to give thenewkernel a customname to
distinguish it fromother kernels. You can change the kernel nameunderGeneral setup ‑> Local Version.
Once all the customizations are set, save the configuration. Aftermaking changes to the configuration,
a 64‑bit kernel can then be compiled by typing the following:

make -j4 Image.gz modules dtbs

Note that the -j4 flag will allow the compilation workload to be spread across four cores in the ARM
processor thus speeding up the compilation. Even so, the compilation process will take a very long

Derek C. Schuurman 66

Exploring Computer Science with the Raspberry Pi

time on a Raspberry Pi since the Linux kernel is a large program with millions of lines of code. When
compilation ends successfully, youmay install the new kernel as follows:

sudo make -j4 modules_install
sudo cp /boot/firmware/$KERNEL.img /boot/firmware/$KERNEL-backup.img
sudo cp arch/arm64/boot/Image.gz /boot/firmware/$KERNEL.img
sudo cp arch/arm64/boot/dts/broadcom/*.dtb /boot/firmware/
sudo cp arch/arm64/boot/dts/overlays/*.dtb* /boot/firmware/overlays/
sudo cp arch/arm64/boot/dts/overlays/README /boot/firmware/overlays/

Note that it is possible use a kernel with a different filename by setting a kernel parameter in /boot
/config.txt. After these steps are successfully completed, reboot the Raspberry Pi to make the
new kernel active. Log in and verify that the new kernel is running using the following command:

uname -a

The new name you configured for the kernel should now be reported along with the Linux kernel ver‑
sion. You will need to reboot each time you change your kernel configuration for the new kernel to
become active.

To reinstall a default kernel from the Raspberry Pi repository, type:

sudo apt --reinstall install raspberrypi-kernel

Note that to speed up kernel compilation it is possible to cross‑compile a modified ARM kernel on a
desktop workstation and then transfer the new kernel to the Raspberry Pi.

Derek C. Schuurman 67

Exploring Computer Science with the Raspberry Pi

5 Networking

5.1 Networking Utilities

The Linux shell supports a variety of tools and utilities for networking. What follows are some helpful
practical tools related to networking.

5.1.1 ping

Ping (Packet Inter‑Newtwork Groper) is helpful utility for testing end‑to‑end connectivity and trans‑
port delays in a TCP/IP network. Ping works by sending an Internet Control Message Protocol (ICMP)
packet with an “echo request” to the specified machine. When a machine receives an echo request,
it normally replies with an echo reply packet (note that network interfaces can also be configured to
ignore ping requests). To ping a remote host, simply type:

ping hostname

where hostname represents the host name (or a “dotted” IP address) of the host you wish to ping.
By default, the “pings” with continue each second, and the results along with the delay time will be
displayed for each ping.

5.1.2 ifconfig

The ifconfig utility can be used to get or set the status of a networking port. To use ifconfig,
type:

sudo ifconfig

For example, on a Raspberry Pi connected to an Ethernet port, one can get the status of the port as
follows:

sudo ifconfig etho

where eth0 is the name of the first Ethernet port. The Wi‑Fi port is typicallly named wlan0. The
above command will return something like the following:

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet a.b.c.d netmask 255.255.255.0 broadcast a.b.c.255
inet6 aaaa::bbbb:cccc:dddd:eeee prefixlen 64 scopeid 0x20<link>
ether aa:bb:cc:dd:ee:ff txqueuelen 1000 (Ethernet)
RX packets 10000 bytes 100000
RX errors 0 dropped 0 overruns 0 frame 0

Derek C. Schuurman 68

Exploring Computer Science with the Raspberry Pi

TX packets 100000 bytes 100000
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Note that this output shows the IPv4 and IPv6 addresses. The address next to the ether label is
the MAC, or Media Access Control address, a unique hardware address assigned at the factory. The
first few bytes (or “octets”, as they are often referred to in networking) of the MAC address are an
Organizationally Unique Identifier, or OUI, assigned by the IEEE. The OUI identifies the manufacturer
of the equipment and can be looked up at standards‑oui.ieee.org.

Note that ifconfig also indicates the number of received and transmitted packets along with the
counts of any communication errors, which can soemtimes be helpful when debugging networking
errors.

5.1.3 traceroute

Traceroute uses similar ICMP packets that are used by ping but with the time‑to‑live (TTL) packet
field set so that it can get replies from each of the hops along the way to a destination machine. To
install traceroute, type:

sudo apt install traceroute

To run traceroute, simply type the following:

traceroute hostname

where hostname is the host name to which you want to trace the route. Typically, a list of hosts and
routers that packets take on there way to hostname should be listed along with their corresponding
delays. traceroute can be handy for identifying the number of hops and sources of congestion in
a route between twomachines on the internet.

5.1.4 mtr

Closely related to traceroute is mtr, which is another network diagnostic tool. mtr conntinually
sends packets along the route to a destination and keeps track of the statistics of the response times
at each hop in the route. A summary diagnostic is displayed showing the average, best, and worst
times along with the percentage of packet losses detected. To install traceroute, type:

sudo apt install mtr

To use mtr, type:

mtr hostname

Derek C. Schuurman 69

https://standards-oui.ieee.org/

Exploring Computer Science with the Raspberry Pi

where hostname indicates the destination and route that you want to analyze.

5.1.5 dig

Not so long ago, when thewhen the Internet was comprised of a limited number of hosts, there was a
file called/etc/hosts contained information about every hosts on the network. This file wasmain‑
tained and distributed across the Internet. This approach became impractical as the number of hosts
grew large. A hierarchical, domain‑based, naming scheme called DNS (the Domain Name System)
was invented and is defined in RFC 1034 and 1035. The DNS system uses UDP packets (Request/Re‑
ply) and a resolver is used to map names to an IP address by sending a request to a local DNS server.
The /etc/hosts file is still found on some hosts, but is often used to store local addresses such as
the address of the local machine.

The Internet is divided into various top level domainswhich are approvedby ICANN. There are about a
dozen root servers in theworldwhich know the addresses of the top‑level domain servers. These top‑
level domains are further subdivided into subdomains, which can be further partitioned, and so on.
These domains on the Internet can be represented by a tree with the leaves of the tree representing
hosts or groups of hosts.

Every domain has a set of resource records associated with it, and DNS servers use these resource
records when replying to queries. When a host has a name query, it passes the query to one of the
local name servers. If the name falls under the jurisdiction of the local name server, it returns the au‑
thoritative resource records. If the requested name cannot be satisfied locally and is part of a remote
domain, then a recursive query can bemade to a remote name server.

Dig is a flexible tool for interrogating DNS name servers. It performs DNS lookups and displays the
answers to queries returned from your name server(s). The dig utility is often used to troubleshoot
DNS problems. To install the dig utility (alongside other DNS utilities), type:

sudo apt-get install dnsutils

Once installed, a basic dig hostname query is made as follows:

dig @server hostname

where server is the DNS server, and hostname is the name to query. The server parameter is op‑
tional; if it is not given the default name server will be used. To perform a reverse look‑up (i.e. deter‑
mine the hostname given an IP address), do the following:

dig -x 1.2.3.4

where 1.2.3.4 is the IP address of the host to query. Type man dig from the command line for a
detailed description of how it can be used.

Derek C. Schuurman 70

https://www.icann.org/

Exploring Computer Science with the Raspberry Pi

5.1.6 wget

Wget is a handy utility for downloading web files from the command line. The basic syntax for wget
is as follows:

wget URL

whereURL is the uniform resource locator of the file youwish to download. For example, to download
this guide, use:

wget https://sites.calvin.edu/derek/tutorials/rpi-guide.pdf

wget includes a rich set of command line options; for more information, type:

wget --help

5.1.7 curl

Curl is a tool to transfer data fromor to a server. It supportsmany different protocols, including HHTP,
HTTPS, FTP, and FTPS. The basic syntax for wget is as follows:

wget URL

where URL is the uniform resource locator, including its protocol, of the file you wish to download.
By default, curl writes the received data to the screen but can be instructed to save the data to a
local file using the -o option. For example, to download this guide to a local file named guide.pdf,
use:

curl https://sites.calvin.edu/derek/tutorials/rpi-guide.pdf -o guide.pdf

curl includes a rich set of command line options so that it can operate without any user interaction.
For more information, type:

curl --help

5.1.8 telnet

Telnet is a client for connecting to remote systems using the Transmission Control Protocol (TCP). For
example, to use telnet to connect to a web server, type:

telnet hostname 80

Derek C. Schuurman 71

Exploring Computer Science with the Raspberry Pi

This will connect to port 80 on server hostname. If it is running a web server you can type GET and
afer hitting enter, you should see HTML code send in reply.

Note: telnet can connect to any port, but note that all text is sent in the clear, ie. insecurely
and without encryption. Anyone observing the traffic on the network will be able to read any
text that is sent.

5.1.9 nmap

The nmap utility, or “networkmapper”, is a tool for network exploration and security scanning. It can
rapidly scan large networks to find hosts, identify open ports, operating systems, and other network
characteristics.

NOTE: Because the nmap utility can be used to detect network security issues, it should only
be used with permission on a network. Using nmap on a network without permission is like
checking thewindowsanddoors to someone’s homeand is not consideredpolite, orworse,may
be interpreted as an aggressive act or a precursor to further intrusions. Recall the sage movie
line from Spiderman’s uncle: with great power comes great responsibility.

5.1.10 tcpdump

The tcpdump tool enables one to “snoop” network packets. To install the tool, type:

sudo apt install tcpdump

Once the tool is installed, it can be used to monitor network traffic. For instance, to monitor traffic
from

monitor your MQTT traffic (once again, modify the hostname of your MQTT broker if you are using a
different one): sudo tcpdump ‑XA host mqtt.eclipseprojects.io Note that we are using command line
options to display the packet contents in ASCII and to limit our monitoring only to traffic exchanged
with the MQTT broker. Each time anMQTT packet is sent, you should see a network packet “dumped”
to the console.

NOTE: Runningtcpdumpor similar tools needs to be used ethically and judiciously. Once again:
with great power comes great responsibility.

5.1.11 Wireshark

Wireshark is a popular network protocol analyzer which captures packet data and display it in detail.
It can be used to troubleshoot network problems, chase down security issues, and debug or verify

Derek C. Schuurman 72

Exploring Computer Science with the Raspberry Pi

networking applications. To install the tool, type:

sudo apt install wireshark

To run Wireshark, type:

sudo wireshark eth0

where eth0 is the port name you want to monitor. Wireshark can perform live capture of network
data, but this canbe like “drinking froma firehose.” Thus,Wireshark canuse filters to limit the capture
of packets to those which are of interest.

NOTE: Running Wirshark or similar tools on servers is normally not “polite” since it allows you
to view network traffic, some of which is “sent in the clear.” If you are monitoring your own
network or Raspberry Pi, and the traffic is your traffic, you may give yourself permission to do
this. However, in general, Wireshark is among a set of tools that need to be used ethically and
judiciously. Once again, recall the sage movie line from Spiderman’s uncle: with great power
comes great responsibility.

5.1.12 Drill Exercises

1. What is the IP address of your local name server?
2. What is the IP address of www.calvin.edu?
3. What is a DNS MX record? What is the MX record for calvin.edu?
4. Do DNS requests use the TCP or UDP transport protocol? Why does DNS use the transport pro‑

tocol that it does?
5. Use wget to download this book.
6. Use Wireshark to monitor the packets leaving your networking port. What kind of packets are

coming and going? Use a filter to view only web traffic. Are the packets enrypted? How can you
tell?

5.2 TheWeb

It is possible to configure the Raspberry Pi to run aweb server. A web server is a program that accepts
requests using HTTP (Hypertext transfer Protocol) or HTTPS (secure HTTP). Typically, web server
listed for incoming HTTP requests on port 80 and on port 443 for HTTPS. Various open source web
servers are available, including the Apache web server, Nginx, and Lighttpd. In the following sections
we will explore both Lighttpd and Nginx.

Derek C. Schuurman 73

Exploring Computer Science with the Raspberry Pi

5.2.1 Lighttpd

Lighttpd is a simple, lightweight web server which can be installed from the command line as fol‑
lows:

sudo apt update
sudo apt -y install lighttpd

It is recommended that you consult the onlinemanuals for Lighttpd to ensure the server is configured
and setup securely.

Test the webserver by creating a simple web file as follows:

sudo nano /var/www/html/index.html

Using an editor of your choice, enter a simple HTML file as follows:

<html>
<head></head>
<body>

Hello world!
</body>
</html>

Point a browser to http://a.b.c.d where a.b.c.d is the local IP address of your Raspberry Pi.
The message, “hello world” should appear in a web page.

You can see the status of the server by using the following command:

sudo service lighttpd status

To disable the lighttpd web service from starting up on the next reboot boot, type:

sudo systemctl disable lighttpd

5.2.2 Nginx

Nginx is a full‑featured open source web server which can be installed from the command line as fol‑
lows:

sudo apt update
sudo apt -y install nginx

If the web server needs to support PHP, type the following:

apt install php php-fpm php-cli

Derek C. Schuurman 74

Exploring Computer Science with the Raspberry Pi

Test the webserver by creating a simple web file in the root web folder as follows:

sudo nano /var/www/html/index.html

Using an editor of your choice, enter a simple HTML file as follows:

<html>
<head></head>
<body>

Hello world!
</body>
</html>

Point a browser to http://a.b.c.d where a.b.c.d is the local IP address of your Raspberry Pi.
The message, “hello world” should appear in a web page.

You can view the status of the server by using the following command:

sudo service nginx status

To disable the nginx web service, type:

sudo systemctl disable nginx

5.3 Java Network Programming

The Berkeley sockets interfacewas originally developed at the University of California at Berkeley as a
tool to for network programming. A Socket is a handle to a communications link over a network with
another application. A socket connection includes a local IP address and port number and a remote
IP address and remote port number.

Java is one of the first languages designed with networking in mind. Java applications can conve‑
niently send and receive data across the Internet. The java.net package provides the classes for
implementing networking applications. Several of the key classes for Java networking are summa‑
rized in the table below.

Class Description

ServerSocket implements server sockets

Socket implements client sockets

InetAddress represents an IP Address

DatagramPacket represents a UDP datagram packet

Derek C. Schuurman 75

Exploring Computer Science with the Raspberry Pi

Class Description

DatagramSocket socket for sending and receiving UDP datagram packets

MulticastSocket used for sending and receiving IP multicast packets

URL represents a Uniform Resource Locator, a pointer to a “resource”
on the World Wide Web

5.3.0.1 ServerSocket Class The ServerSocket class is used by servers to listen for client con‑
nections. The ServerSocket class specifies a port number to listen on for connections. This con‑
structormethod blocks until a connection ismade and then returns a socket for communicating with
the client. Once the communication is complete, a closemethod can be called to close the socket
connection.

5.3.0.2 Sample Java Network Code What follows is a sample java program for establishing a
Server Socket on port 7777, waiting for a connection, and performing a simple exchange of text
messageswith a remote client. Use a text editor to enter theprogramand save it asServer.java.

import java.net.*;
import java.util.*;
import java.io.*;

class Server {
public static void main(String args[]) throws IOException {

System.out.println("Creating server socket on port 7777 and
waiting for connection:");

ServerSocket server = new ServerSocket(7777);
Socket socket = server.accept();

// Read text from the socket connection and display it
Scanner in = new Scanner(socket.getInputStream());
String msg = in.nextLine();
System.out.println("Received message: "+msg);

// Send a simple message back to the client
PrintWriter out = new PrintWriter(socket.getOutputStream());
out.println("Hello from the server side!");
out.flush(); // empty the buffer

// Close socket and server
socket.close();
server.close();

}
}

Derek C. Schuurman 76

Exploring Computer Science with the Raspberry Pi

To compile this program to java bytecode and then run it, type:

javac Server.java
java Server

This program will create a server socket and wait for a client connection. You can test the program
by connecting to the server socket using the telnet utility, a program that can connect to a remote
server and send and receive text characters. To install telnet on your Raspberry Pi, type:

sudo apt install telnet

You can connect to the Java server program remotely using the IP address of the Raspberry Pi or you
canconnect locally using the local loopback interfacewhichusesa reserved IPaddressof127.0.0.1
and a special hostname of localhost. Open another terminal session and use a telnet connec‑
tion to the local loopback interface on port 7777 as follows:

telnet 127.0.0.1 7777

Type a short message and you should it displayed by the server, and then the client should display
the server message: Hello from the server side!.

Rather thanusingtelnet, you canalso create yourownJavaprogram formakinga client connection
to the server. What follows is a sample java program for communicatingwith our simple server on the
local loopback interface. Use a text editor to enter the program and save it as Client.java.

import java.net.*;
import java.util.*;
import java.io.*;

class Client {
public static void main(String args[]) throws IOException {

// Create a socket connection to a server port 7777
Socket socket = new Socket("localhost", 7777);

// Send some data to the server
PrintWriter out = new PrintWriter(socket.getOutputStream());
out.println("Hello from the client!");
out.flush();

// Read reply from server and display it
Scanner in = new Scanner(socket.getInputStream());
String msg = in.nextLine();
System.out.println("Received message: "+msg);

// Close socket connection
socket.close();

}
}

Derek C. Schuurman 77

Exploring Computer Science with the Raspberry Pi

Note that if youwant to run the client program remotely, replace thelocalhost hostnamewith the
hostname or IP address of the remote server. To compile the client program, type:

javac Client.java

Next, start the server in one terminal window. It will create a server socket and wait for a connection.
On another terminal window, run the client java program as follows:

java Client

Observe both terminal sessions and note the messages that are displayed as the client connects to
the server, exchanges a pair of messages, and then exits.

For more information, see the OpenJDK Java documentation.

Derek C. Schuurman 78

https://openjdk.org/

Exploring Computer Science with the Raspberry Pi

6 Databases

A database is a structured collection of logically related data. Normally, one interacts with a database
using software referred to as a databasemanagement system (DBMS). The database itself along with
the DBMS and associated software is referred to as a database system.

6.1 Introduction to SQL Databases and the Raspberry Pi

One common type of database is a relational DBMS, a term that was originally defined and coined by
Edgar Codd in 1970. In a relational database the data is stored in 2‑dimensional tables of rows (called
tuples or records) and columns (called attributes or fields). A table or relation is definedas a collection
of records or tuples that have the same fields or attributes.

Figure 13: Data is stored in 2‑dimensional tables of rows

Structured Query Language or SQL is a standard language used to interact with relational database
systems and is maintained as an ISO standard. SQL provides a convenient level of abstraction to in‑
teract with a database to define, manage, and query data. SQL is a declarative programming lan‑
guage as opposed to an imperative programming language such as the C programming language in
which all the computations are explicitly stated step‑by‑step. A declarative language is one that de‑
fines what the program should accomplish, rather than describing how to go about accomplishing
it. An SQL statement is processed by the database system which determines the best way to return
the requested data. Although there are small differences in SQL syntax between relational database
systems, the syntax is largely the same across many systems.

There arenumerous commercial andopen sourceSQLdatabase systemsavailable. Someexamples of
open sourceprojects includeSQLite,MySQL, andPostgreSQL, all ofwhichare included in the standard
Raspberry Pi software repositories.

Derek C. Schuurman 79

Exploring Computer Science with the Raspberry Pi

6.1.1 Using SQLite

SQLite is a simple, a friendly, lightweight database program which supports most SQL commands.
SQLite is also convenient since it does not run as a server and stores data in a single file which can be
placed anywhere.

SQLite can be installed as follows:

sudo apt install sqlite3

To setup an example sqlite database, type the following:

sqlite3 temperature.db

Once SQLite launches, create a table to store temperature data by typing the following SQL com‑
mand:

CREATE TABLE TemperatureData
(datetime TEXT NOT NULL, temperature double NOT NULL);

Make sure you include a semicolon at the end of the command to indicate that your SQL command is
complete. Note that SQLite does not have a storage class for dates and/or times so we will store the
date and time as a text field. Next, check that the table was successfully created by typing:

sqlite> .tables

Type the following sqlite3 command to show the structure of the table you just created:

pragma table_info('TemperatureData');

Once the table is defined you can insert, delete, edit, and query data in the table. For example, to
insert data into the table, type the following:

INSERT INTO TemperatureData VALUES (datetime('now','localtime'), 23.0);

To show the table data, use a query like the following:

SELECT * FROM TemperatureData;

Finally, to quit SQLite, type the following at the prompt:

sqlite> .quit

Derek C. Schuurman 80

Exploring Computer Science with the Raspberry Pi

6.1.2 Using MySQL

Although there are some graphical user interfaces available for MySQL, this tutorial will focus on the
command line interface for MySQL. MySQL can be installed as follows:

sudo apt install mariadb-server

Run the following command and follow the prompts to setup and secure the MySQL server:

sudo mysql_secure_installation

To access your MySQL server with root access, type:

sudo mysql -u root -p

Once other usernames and passwords have been established, one can access MySQL using them as
follows:

mysql -u username -p

Where username is the username, and after pressing enter a prompt will appear for a password. In
order to use a database or create new ones, youmust have sufficient privileges assigned to your user‑
name.

To list all the databases on the MySQL server, type:

SHOW DATABASES;

SQL statements include one or more SQL keywords that are often written in uppercase as amatter of
style and which end with a semi‑colon. To create new database in SQL from the command line, use
the CREATE DATABASE statement as follows:

CREATE DATABASE school;

After executing this statement, MySQL should return amessage indicatingwhether the commandwas
successful ornot. TheSHOWDATABASESstatementwill showall thedatabaseson thedatabase server.
After creating a new database, the SHOW DATABASES statement can be used to verify that the new
database has been created. To show all the databases on the server, type the following:

SHOW DATABASES;

MySQL should return with a list of the current databases. The USE command is issued to select and
use a specific database. For example, to use the database we just created, type:

USE school;

Derek C. Schuurman 81

Exploring Computer Science with the Raspberry Pi

A database is a collection of tables. One the database selected, you can query and access the tables
in the database. To create a table within the school database, you use the CREATE TABLE statement.
For example, to create a table of students names type the following:

CREATE TABLE students (
studentNumber int NOT NULL,
lastName varchar(50) NOT NULL,
firstName varchar(50) NOT NULL,
PRIMARY KEY (studentNumber)
);

The table name is specified after CREATE TABLE statement and then the columns names are given
followed by data type, size, NOT NULL or not. A field which is specified as NOT NULL must contain a
value. It is also possible to specify the primary key of the table. The primary key is used to uniquely
identify each row in the table. Since student numbers are supposed to be unique, the primary key in
this example is set to studentNumber. If the table has more than one primary key, you can separate
them by a comma. In order to view details about a table, including information about fields and data
types, use the DESCRIBE statement. For example, type:

DESCRIBE students;

Thiswill return information about the tablewe just created and information about the fields that com‑
prise it. The output fromMySQL should resemble the following:

+---------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------------+-------------+------+-----+---------+-------+
studentNumber	int(10)	NO	PRI	NULL	
lastName	varchar(50)	NO		NULL	
firstName	varchar(50)	NO		NULL	
+---------------+-------------+------+-----+---------+-------+

To modify the structure or type of data in existing tables, MySQL provides an ALTER command. Al‑
though the SQL keywords themselves are not case sensitive, the database and tables may be case
sensitive depending on the underlying operating system being used. The data type of each of MySQL
fields or attributesmust also be specified. MySQL supports a variety of numeric, character and binary
data types. Some of the common data types supported in MySQL are summarized in the following
table:

Data Type Description

INT A signed integer (4 bytes)

FlOAT A floating‑point number (4 bytes)

Derek C. Schuurman 82

Exploring Computer Science with the Raspberry Pi

Data Type Description

DOUBLE Double precision floating‑point number (8 bytes)

DATE Date in the format YYYY‑MM‑DD

DATETIME Date and time

CHAR(M) A fixed‑length string with a length of M characters (between 1 to 255 character)

VARCHAR(M) A variable‑length string with a length of up to M characters (between 1 to 255)

TEXT A text field with a maximum length of 65535 characters

BLOB A binary large object (used to store binary data such as images)

In order to show all the tables in a database, you can use the SHOW TABLES statements as follows:

SHOW TABLES;

Toadd records to the students database, use the INSERT statement. For example, to add “JohnCalvin”
with a student ID number of 12345 into the students table, do the following:

INSERT INTO students
(studentNumber,firstName,lastName) VALUES
(12345, "John", "Calvin");

6.1.2.1 MySQLQueries You can also askMySQL to search for data by submitting a query asking for
all the records or rows that match a specific criteria. The SQL SELECT statement is used to perform
queries on an SQL table. For example, to list all the students in the table, type:

SELECT * FROM students;

The * indicates that all columns should be returned. The SELECT query returns the requested data as
text in a tabular format like follows:

+---------------+----------+-----------+
| studentNumber | lastName | firstName |
+---------------+----------+-----------+
| 12345 | Calvin | John |
+---------------+----------+-----------+

To display specific columns, replace the *with a comma‑separated list of columns that youwould like
to see displayed. For example, to display just the lastName and firstName columns, type:

SELECT lastName, firstName FROM students;

Derek C. Schuurman 83

Exploring Computer Science with the Raspberry Pi

To list the students in alphabetical order using the ORDER BY clause as follows:

SELECT * FROM students ORDER BY lastName, firstName;

The order can be explicitly set to be ascending or descending by placing the ASC or DESC keywords at
the end of the query. To prevent the SELECT statement from returning duplicate values in the results,
the DISTINCT keyword can be used. For example, to list all the distinct first names in the students
table, type:

SELECT DISTINCT firstName FROM students;

It is alsopossible to restrict the search tomeet specific criteriausing theWHEREkeyword. Forexample,
to list all the students who have the first name of “John”, type:

SELECT * FROM students WHERE firstName = 'John';

The conditions to restrict search results can be further combinedwith boolean operators such as AND
and OR operators to express search based on different conditions. In addition to WHERE, there are
other keywords such as LIKE and BETWEEN which can be used to restrict the results of a search. For
example, to list all the students whose first name starts with a “J”, type:

SELECT * FROM students WHERE firstName LIKE 'J%';

where% is awildcardwhichmatchesanycharacter or sequenceof characters. TheBETWEENkeyword
will restrict a search to values that fall in a range between some minimum and maximum value. For
example, to return all the last names that lie alphabetically between “Calvin” and “Luther”, type:

SELECT * FROM students WHERE lastName
BETWEEN 'Calvin' AND 'Luther';

One can also query the number of rows that match a certain condition using the COUNT keyword:

SELECT COUNT(*) FROM students WHERE firstName LIKE 'J%';

To delete data from a table, use the DELETE statement. For example, to delete all the students with
the last name of “Calvin”, do the following:

DELETE FROM students WHERE lastName = 'Calvin';

To make another table called courses that stores a course code and student number for each course
a student is enrolled in, use the CREATE statement again as follows:

CREATE TABLE courses (
studentNumber int NOT NULL,
courseCode varchar(7) NOT NULL);

Derek C. Schuurman 84

Exploring Computer Science with the Raspberry Pi

In this table the studentNumber will not necessarily be unique since it will be appear once for each
course in which a student is enrolled. The courseCode will also not necessarily be unique since it will
be repeated for each student in the course. Note that the students names do not need to be stored
again; they can be retrieved if required by looking up the studentNumber in the students table. To
add some records to the courses database, use the INSERT statement once again:

INSERT INTO courses (studentNumber,courseCode) VALUES (12345, "CSC101A");

To change or modify data in a table, use the UPDATE keyword as follows:

UPDATE students SET studentNumber = 123
WHERE firstName = 'John' AND lastName = 'Calvin';

This statement will modify the students table and replace the studentNumber for the student with
the name John Calvin. It is possible tomodifymultiple field valueswith anUPDATE statement using a
comma‑separated list of assignments. TheWHERE clause in this case uses a boolean AND operator to
make amore complex condition. You can also askMySQL to search data frommultiple tables by using
a JOIN operation. The JOIN keyword relates two or more tables, typically by using values that are
commonbetween them. The students andcoursesdatabasehavea commonvalueof studentNumber
that can be used to join them. The ON keyword can be used to specify a condition with which to join
tables. For example, to list all the first names and last names of students enrolled in CSC101A, you can
use a join operation based on the condition of matching a studentNumber in a query as follows:

SELECT firstName, lastName
FROM students
JOIN courses
ON students.studentNumber = courses.studentNumber
WHERE courseCode = 'CSC101A';

To close a database, type the following:

CLOSE DATABASE school;

It is alsopossible todelete a table andall it contents using theDROPcommand. This commandshould
be used with care since it permanently deletes your table and cannot be undone.

DROP TABLE students;

Finally, you can quit MySQL at any time by typing the QUIT command.

quit

6.1.2.2 Backing UpMySQL Data You can use the mysqldump utility to create a simple backup of
your database to a file using the following syntax:

Derek C. Schuurman 85

Exploring Computer Science with the Raspberry Pi

mysqldump -u username -ppassword databasename > backup.sql

where username and password are your MySQL username and password and databasename is
the name of the database youwant to backup. The resultant file called backup.sql will contain all the
SQL statements needed to create the table and populate the table in a new database server. If you
examine the file backup.sql in a text editor you will observe the necessary SQL commands to create
thedatabase, its tables, andall thedata contentswithin the tables. Thedata canbe restoredby typing
the following:

mysql -u username -p password databasename < backup.sql

6.1.2.3 UsingPHPandMySQL Once you are familiarwithMySQL syntax in the command‑line envi‑
ronment, you can begin towrite PHP codewhich can connect to aMySQL database and query it using
SQL statements. PHP includes several functions to connect to a MySQL server and perform various
queries. Some of the many PHP MySQL functions are shown in the following table:

Function Description

mysql_connect Opens a connection to a MySQL database server

mysql_select_db Opens a database on the MySQL server

mysql_query Performs a MySQL query on the currently selected database

mysql_close Closes a MySQL database connection

mysql_fetch_array Returns an associative array with the next row from a MySQL query

mysql_error Returns the text of the error message from a previous MySQL operation

mysql_create_db Create a MySQL database

mysql_drop_db Drop a MySQL database

mysql_real_escape_string makes data safer before sending query to MySQL

The SELECT syntax used on theMySQL command line is the same syntax used to query data using the
PHPmysql_query function (the query is passed as a string argument). However, before data canbe
queried, theproperPHP functionsmustbecalled inorder to connect to theMySQLserver and to select
the appropriate database. For example, the following PHP code connects to the school database and
retrieves a list of students and displays it as a list within a webpage:

<?php

Derek C. Schuurman 86

Exploring Computer Science with the Raspberry Pi

$db = mysql_connect("localhost", "username", "password");
mysql_select_db("school");
$results = mysql_query("SELECT * FROM students");
while ($row = mysql_fetch_array($results)) { ?>
 <?= $row["firstName"]." ".$row["lastName"] ?>
<?php
}
mysql_close($db);

?>

6.1.2.4 Using MySQL with Java MySQL can also be used with the Java Programming language.
The JDBC (Java Database Connectivity) API is provides DBMS connectivity to a wide range of SQL
databases including MySQL as well as access to other tabular data sources such as spreadsheets. The
JDBC API includes several classes all found in the java.sql package.

6.1.3 Using PostgreSQL

PostgreSQL can be installed as follows:

sudo apt install postgresql

This package includes a command line client utility called psql which can be used to interact with
the PostgreSQL server. After the installation you can verify that the postgresql service is active as
follows:

sudo service postgresql status

It is recommended that you consult the online manuals for PostgreSQL to ensure the server is setup
securely.

When you first run PostgreSQL a default administrator named “postgres” is created. This username
can then be used with psql to connect to the PosgreSQL service as follows:

sudo -u postgres psql

Since the new “postgres” user has no password, your first action should be to set the password as
follows:

\password postgres

You can now create a new database as follows:

CREATE DATABASE school;

Derek C. Schuurman 87

Exploring Computer Science with the Raspberry Pi

This command creates a new database name school. Within this database we can define tables,
such as tables to store students and courses.

Rather than using the administrator account, we can create a new PostgreSQL user for this database
as follows:

create user pi with encrypted password 'raspberry';
grant all privileges on database school to pi;

These commands create a new user name pi with password raspberry and privileges to use the
new school database. We can then type \q to quit psql and connect to the school database using
this new username and password as follows:

psql school pi

An interactive prompt should appear with full access to the school database. To access a different
database, youmust initiate a new connection as follows:

psql database username

where dbname and username are the database name and username you wish to use.

6.1.3.1 Creating Tables To create a tablewithin theschool database, you use the CREATE TABLE
statement. For example, to create a table of student names, type the following:

CREATE TABLE students (
studentnumber int NOT NULL,
lastname varchar(50) NOT NULL,
firstname varchar(50) NOT NULL
);

The table name is specified after CREATE TABLE statement and then the columns names are given
followed by data type, size, NOT NULL or not. A field which is specified as NOT NULL must contain
a value. Identifiers such as column names are converted to lowercase in PostgreSQL unless they are
enclosed in double quotes. In order to view details about a table, including information about fields
and data types, use the DESCRIBE statement. For example, type:

\d students;

Thiswill return information about the tablewe just created and information about the fields that com‑
prise it. The output from PostgreSQL should resemble the following:

+---------------+-----------------------+-----------+----------+
| Column | Type | Collation | Nullable |
+---------------+-----------------------+-----------+----------+
| studentnumber | integer | | not null |

Derek C. Schuurman 88

Exploring Computer Science with the Raspberry Pi

| lastname | character varying(50) | | not null |
| firstname | character varying(50) | | not null |
+---------------+-----------------------+-----------+----------+

To modify the structure or type of data in existing tables, PostgreSQL provides an ALTER command.
The data type of each of PostgreSQL fields or attributes must also be specified. PostgreSQL supports
a variety of numeric, character and binary data types. Some of the common data types supported in
PostgreSQL are summarized in the following table:

Data Type Description

integer A signed integer (4 bytes)

double precision Double precision floating‑point number (8 bytes)

date Date in the format YYYY‑MM‑DD

timestamp Date and time

char [(n)] A fixed‑length string with a length of n characters

varchar [(n)] A variable‑length string with a length of up to n characters

text variable‑length character string

In order to show all the tables in a database, you can use the SHOW TABLES statements as follows:

\dt

Toadd records to the students database, use the INSERT statement. For example, to add “JohnCalvin”
with a student ID number of 12345 into the students table, do the following:

INSERT INTO students
(studentnumber,firstname,lastname) VALUES
(12345, 'John', 'Calvin');

6.1.3.2 PostgreSQLQueries You can also ask PostgreSQL to search for data by submitting a query
asking for all the records or rows that match a specific criteria. The SQL SELECT statement is used to
perform queries on an SQL table. For example, to list all the students in the table, type:

SELECT * FROM students;

The * indicates that all columns should be returned. The SELECT query returns the requested data as
text in a tabular format like the following:

studentnumber | lastname | firstname |

Derek C. Schuurman 89

Exploring Computer Science with the Raspberry Pi

+---------------+----------+-----------+
12345 | Calvin | John

To display specific columns, replace the *with a comma‑separated list of columns that youwould like
to see displayed. For example, to display just the lastname and firstname columns, type:

SELECT lastname, firstname FROM students;

To list the students in alphabetical order using the ORDER BY clause as follows:

SELECT * FROM students ORDER BY lastname, firstname;

The order can be explicitly set to be ascending or descending by placing the ASC or DESC keywords at
the end of the query. To prevent the SELECT statement from returning duplicate values in the results,
the DISTINCT keyword can be used. For example, to list all the distinct first names in the students
table, type:

SELECT DISTINCT firstname FROM students;

It is alsopossible to restrict the search tomeet specific criteriausing theWHEREkeyword. Forexample,
to list all the students who have the first name of “John”, type:

SELECT * FROM students WHERE firstname = 'John';

The conditions to restrict search results can be further combinedwith boolean operators such as AND
and OR operators to express search based on different conditions. In addition to WHERE, there are
other keywords such as LIKE and BETWEEN which can be used to restrict the results of a search. For
example, to list all the students whose first name starts with a “J”, type:

SELECT * FROM students WHERE firstname LIKE 'J%';

where% is awildcardwhichmatchesanycharacter or sequenceof characters. TheBETWEENkeyword
will restrict a search to values that fall in a range between some minimum and maximum value. For
example, to return all the last names that lie alphabetically between “Calvin” and “Luther”, type:

SELECT * FROM students WHERE lastname
BETWEEN 'Calvin' AND 'Luther';

One can also query the number of rows that match a certain condition using the COUNT keyword:

SELECT COUNT(*) FROM students WHERE firstname LIKE 'J%';

To delete data from a table, use the DELETE statement. For example, to delete all the students with
the last name of “Calvin”, do the following:

DELETE FROM students WHERE lastname = 'Calvin';

Derek C. Schuurman 90

Exploring Computer Science with the Raspberry Pi

To make another table called courses that stores a course code and student number for each course
a student is enrolled in, use the CREATE statement again as follows:

CREATE TABLE courses (
studentnumber int NOT NULL,
coursecode varchar(7) NOT NULL);

In this table the studentnumber field will not necessarily be unique since it will appear once for each
course in which a student is enrolled. The coursecode will also not necessarily be unique since it
will be repeated for each student in the course. Note that the student names do not need to be stored
again; they can be retrieved if required by looking up the studentNumber in the students table. To
add some records to the courses database, use the INSERT statement once again:

INSERT INTO courses (studentnumber,coursecode)
VALUES (12345, 'CSC101A');

To change or modify data in a table, use the UPDATE keyword as follows:

UPDATE students SET lastname = 'knox'
WHERE studentnumber = 12345;

This statement will modify the students table and replace the studentnumber for the student with
the lastname knox. It is possible to modify multiple field values with an UPDATE statement using
a comma‑separated list of assignments. The WHERE clause in this case uses a boolean AND opera‑
tor to make a more complex condition. You can also ask PostgreSQL to search data from multiple
tables by using a JOIN operation. The JOIN keyword relates two or more tables, typically by using
values that are common between them. The students and courses database have a common value of
studentnumber that can be used to join them. The ON keyword can be used to specify a condition
with which to join tables. For example, to list all the first names and last names of students enrolled
in CSC101A, you can use a join operation based on the condition of matching a studentnumber in
a query as follows:

SELECT firstname, lastname
FROM students

JOIN courses
ON students.studentnumber = courses.studentnumber

WHERE coursecode = 'CS101A';

It is alsopossible todelete a table andall it contents using theDROPcommand. This commandshould
be used with care since it permanently deletes your table and cannot be undone.

DROP TABLE students;

To close a database connection and quit psql, type the following:

Derek C. Schuurman 91

Exploring Computer Science with the Raspberry Pi

\q

Drill Exercise

Add some twomore students to thestudents table. Add twomore entries to thecourses table us‑
ing the studentnumber of the two students you added for a course named CS326. Use a SELECT
with a JOIN to show all the students in CS326.

6.2 Cloud Databases

It has become quite common to store data in a cloud database. There are a variety of cloud services
available, including services that support MySQL and PostgreSQL. These services require a subscrip‑
tion (and some offer free trial plans you can try out).

Once you have registered for a cloud service, you will be given a URI (Uniform Resource Identifier)
which will have a format something like the following:

postgres://username:password@hostname/database

The URI is an unique string which includes information about the username, password, and
hostname of your cloud service. This will be used to connect to the cloud database from your
Raspberry Pi.

Next, ssh into the Raspberry Pi. Assuming you are using a PostgreSQL cloud service, youwill need to
install the PostgreSQL interactive client as follows:

sudo apt install -y postgresql-client

This command installs psql, a terminal‑based front‑end for PostgreSQL. Copy the URI given by your
cloud service provider and enter the following on the command line of your Raspberry Pi:

psql postgres://username:password@hostname/database

wherepostgres://username:password@hostname/database is the URI provided by your
cloud service provider. An interactive prompt should appear when you press enter and a successful
connection is made.

Note: The structure of the URI includes sections made up of the username, password,
hostname, and database name. Consequently, your URI should always be kept confidential.

Next, create a table for the data youwish to store in the cloud. For instance, to create a new SQL table
to store temperature data type the following SQL command at the psql prompt:

CREATE TABLE temperaturedata (datetime timestamp DEFAULT
CURRENT_TIMESTAMP, temperature FLOAT NOT NULL);

Derek C. Schuurman 92

Exploring Computer Science with the Raspberry Pi

The DEFAULT keyword allows the datetime field to be automatically set to the current date and
time when adding a new temperature value. Don’t forget the semicolon at the end of the command
to indicate that your SQL command is complete! Check that the table was successfully created by
typing:

\d+

The output should list the specifications and fields for your new table. To quit the PostgreSQL client,
type \q at the psql prompt.

Your database should now be set for recording a date and time and temperature in the cloud! To use
Python with a cloud database, you will need to install the psycopg2 library as follows:

sudo apt install python3-psycopg2

Now you are ready to use a cloud database in a Python program. As an example, enter the following
sample code and be sure to change the URI constant so that it contains your personal URI for your
cloud database.

'''
This program stores temperature to a PostgreSQL cloud database.
'''
import sys
import signal
import urllib.parse as up
import psycopg2

Constants
TIMEZONE = "America/Detroit"
URI = 'postgres://username:password@hostname/database' # cloud database

URI
TABLE = 'temperaturedata'

Connect to the SQL cloud database
up.uses_netloc.append("postgres")
uri = up.urlparse(URI)
conn = psycopg2.connect(database=uri.path[1:], user=uri.username, password

=uri.password, host=uri.hostname, port=uri.port)

Open a cursor to perform database operations
cursor = conn.cursor()

Set the local timezone for this session
cursor.execute(f'SET TIME ZONE "{TIMEZONE}"')
conn.commit()

Continuously loop prompting for temperature data
while True:

temp = input("Enter a temperature reading in Degrees Celsius. Type '

Derek C. Schuurman 93

https://pypi.org/project/psycopg2/

Exploring Computer Science with the Raspberry Pi

quit' to exit: ")
if temp == 'quit':

break
sqlcmd = f"INSERT INTO {TABLE} (temperature) VALUES ({float(temp)})"
cursor.execute(sqlcmd)
conn.commit()

conn.close()
print('Done')

Note that this program continuously prompts for a new temperature until the user entersquit. Each
new temperature entered is inserted into the cloud database. Test that values are being entered into
your database by typing the following in your psql terminal:

SELECT * FROM temperaturedata;

You should see a list of rows for each temperature sample that has been inserted in the table and the
times for each.

6.3 Vector Databases

Vector databases are a speical form of database for storing vectors. Vectors can be used to store a
fixed‑length listsofnumbers,whichcouldbedata representinghigh‑dimensionaldata suchas images,
audio, and text.

Vectors can also be used to represent text data in applicatios such as Large Language Models (LLMs)
by converting text into numerical data in a way that captures the structure of the original text. One
technique for converting text data to vector representatins is Word2vec, a technique used in natural
language processing (NLP).

Vector databases typically include a similarity search feature to find vectors with the closest match to
aquery vector. One common technique for checking similarity is something called euclidean distance,
which computes the length of a line separating twodata points. Vector databases can also be indexed
to support searches with low latency. An example of an open source vector database is the Milvis
database. Milvus includes libraries for popular languages like Python. For more information, see the
Milvus tutorials.

Derek C. Schuurman 94

https://www.cambridge.org/core/journals/natural-language-engineering/article/word2vec/B84AE4446BD47F48847B4904F0B36E0B
https://milvus.io/
https://milvus.io/
https://milvus.io/bootcamp

Exploring Computer Science with the Raspberry Pi

7 Embedded Systems and the Internet of Things

The Raspberry Pi is a single board computer that can be used as an embedded system. An embedded
system is one that combines computer hardware and software with various sensors and actuators
within another device to perform a specific function. Examples of embedded systems include robots,
automobiles, factory automation, and home appliances.

The Raspberry Pi includes a GPIO port that can serve as a means of interfacing inputs and outputs
with the real world. Controlling the GPIO port is relatively simple.

7.1 Reading GPIO inputs

GPIO pins can also be configured as a digital input, which allows the Raspberry Pi to read the input
state: either a logic high or low. Note that an input pin that is not left unconnectedwill “float” andwill
not necessarily read a logical zero. A floating input is unpredictable: it may be high, may be low, or
somewhere in between. For this reason, a pull‑up resistor or pull‑down resistor can be used to give an
input pin a defined default state, even if there is nothing is connected to it.

Figure 14: Input circuit with pull‑up resistor

Conveniently, the Raspberry Pi includes internal pull‑up and pull‑down resistors that can be enabled
if need be. These can be configured at the time that the GPIO pin is being configured.

7.1.1 GPIO Input Events

The Python gpiozero library includes detection of different input events that can be used to call a
callback function. Examples of these events and the Python code to call a callback function named
my_callback are listed below: detection for the following: 1. Rising edges

from gpiozero import Button

Derek C. Schuurman 95

Exploring Computer Science with the Raspberry Pi

Figure 15: Input circuit with internal pull‑up resistor

from signal import pause

button = Button(18, edge="rising")

def button_pressed(button):
print”(Rising edge detected”!)

button.when_activated = button_pressed
pause()

2. Falling edges

from gpiozero import Button
from signal import pause

button = Button(18, edge="falling")

def button_pressed(button):
print(Falling edge detected”!)

button.when_activated = button_pressed
pause()

Note that when a mechanical switch closes, the metal contacts may mechanically “bounce” for a
short time before it settles. The result will produce a “chatter” of on/off spikes which may appear
like multiple on/off transitions at a digital input. Therefore the above code includes a setting for
debounce_time to deal with switch bouncing. The debounce_time paramter ensures that the
callback function (my_callback) is triggered only once within the specified period (100ms in this
example) after a button press or release event. Debouncing is accomplished by adding a delay that is
longer than the mechanical bounce time of the switch.

Some sample Python code that sets up an event to detect falling edges with software debouncing is

Derek C. Schuurman 96

Exploring Computer Science with the Raspberry Pi

given below:

from gpiozero import Button
from signal import pause
import time

Use GPIO 21 as button input with pull-up and debounce enabled
button = Button(21, pull_up=True, edge="falling", bounce_time=0.1)

def my_callback():
print("Falling edge detected!")
print(time.time())

Attach event handler for falling edge
button.when_activated = my_callback

print("Waiting for events. Press Ctrl+C to exit.")
pause() # Keep the program running

7.2 Setting GPIO outputs

GPIO pins can also be configured as digital outputs, which allows the Raspberry Pi to set the state or
a pin to either a logic high or low. These outputs set the state of a pin either to 0 volts (low) or 3.3 volts
(high). These outputs have relatively weak current drive, but can be interfaced to power switches or
relays to control larger loads.

The digital outputs on the Raspberry Pi do have enough drive to turn on a standard LED, if they are
connected through a suitable current‑limiting resistor. A typical setup is indicated in the schematic
diagram below.

Figure 16: LED current limiting resistor circuit

Selecting a suitable resistance,𝑅, will depend on the forward current required to light up the LED, as
well as the the forward voltage of the LED. The required resistance,𝑅, to achieve the appropriate LED

Derek C. Schuurman 97

Exploring Computer Science with the Raspberry Pi

current is determined by solving the following equation (based on Ohm’s Law):

𝑅 = (𝑉𝐺𝑃𝐼𝑂–𝑉𝑓𝑜𝑟𝑤𝑎𝑟𝑑)/𝐼𝑓𝑜𝑟𝑤𝑎𝑟𝑑

where:
𝑅 = the value of series resistor required
𝑉𝐺𝑃𝐼𝑂 = the voltage of the GPIO port when turned on (approximately 3.3V)
𝑉𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = the “forward voltage” of the LED when it is on (approximately 1.8V)
𝐼𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = the forward current required to illuminate the LED (roughly 1.5mA)

According the datasheet for a particular LED, 𝑉𝑓𝑜𝑟𝑤𝑎𝑟𝑑 ≈ 1.8𝑉 and 𝐼𝑓𝑜𝑟𝑤𝑎𝑟𝑑 ≈ 1.5𝑚𝐴. Using these
values, we get a resistance of roughly 1000𝑜ℎ𝑚𝑠 or 1𝑘𝑜ℎ𝑚. A suitable wiring diagram connecting the
LED to the Raspberry Pi GPIO port pin is shown below (note the resistor color codes displayed in the
diagram reflect a different resistance).

Figure 17: BCM 16 connected via resistor to an LED

Derek C. Schuurman 98

Exploring Computer Science with the Raspberry Pi

Caution should always be observed when connecting GPIO pins to the outside world. Ensure
that the power remainsoffwhile you are performingwiring and always check yourwiring before
applying power! For some general guidelines to help ensure you do not damage your Raspberry
Pi , refer to the section on Troubleshooting Tips.

7.2.1 Controlling GPIO outputs in a Program

The following is an equivalent Python source file that uses the gpiozero library to flash an LED and
then read a digital input. Note that an internal pull‑up is configured on the digital input.

from gpiozero import LED, Button
import time

Use GPIO 16 as output and GPIO 12 as input with pull-up enabled
led = LED(16)
button = Button(12, pull_up=True)

Turn output on and off
led.on()
time.sleep(1.0)
led.off()

Read input
if button.is_pressed:

print('BCM 12 is LOW')
else:

print('BCM 12 is HIGH')

print("Done")

Save the file as testgpio.py and then run it as follows:

python3 testgpio.py

To discover more, visit the gpiozero library documentation.

Next is a sample program that will flash the LED on and off with a delay of 1 second coded in the C
programming language using a GPIO library called pigpio. Edit the program using a standard text
editor and name the source file blink.c.

#include <stdio.h>
#include <pigpio.h>
#include <unistd.h>

#define LED 16
#define DELAY 1

Derek C. Schuurman 99

https://gpiozero.readthedocs.io/en/latest/

Exploring Computer Science with the Raspberry Pi

int main (int argc, char *argv[])
{

if (gpioInitialise()<0) return 1;

gpioSetMode(LED, PI_OUTPUT);
while (1)
{

gpioWrite(LED, PI_ON);
printf("LED ON\n");
sleep(DELAY);
gpioWrite(LED, PI_OFF);
printf("LED OFF\n");
sleep(DELAY);

}
gpioTerminate();
return 0;

}

Before you can run youmust compile the program from the command line as follows:

gcc -Wall blink.c -o blink -lpigpio

Finally, run the program in the terminal by typing:

sudo ./blink

Note that this code requiressudoprivileges. Once started, the LED should begin blinking. Typectrl
-C to exit.

7.2.2 Pulse Width Modulation (PWM) Outputs

A PWM (PulseWidthModulation) signal can be used to control certain kinds of output devices. A PWM
signal can vary the amount of power delivered to an output device by changing the duty cycle of the
signal. It is also commonlyusedwithmicroservomotors to vary thewidthof apulse to set theposition
of a microservo motor. The duty cycle of a PWM signal is illustrated below:

Figure 18: Diagram showing a PWM duty cycle

Derek C. Schuurman 100

Exploring Computer Science with the Raspberry Pi

Thegpiozero library has the capabilty of generatingPWMoutputs on specifiedGPIOpins. Using the
circuit shown in 17, we can progran a PWM output so that the duty cycle will vary the brightness of
an LED Enter the following Python programwhich allows the user to set the duty cycle for a software
PWM signal to the LED:

from gpiozero import PWMLED

Use GPIO 16 as PWM output
led = PWMLED(16)

duty_cycle = 0
led.value = duty_cycle / 100 # Start with 0% duty cycle

while True:
try:

duty_cycle = int(input('Enter a PWM duty cycle (0-100, enter -1 to
end): '))

if duty_cycle == -1:
break

if 0 <= duty_cycle <= 100:
led.value = duty_cycle / 100
print(f'Duty cycle={duty_cycle}%')

else:
print("Please enter a value between 0 and 100.")

except ValueError:
print("Invalid input. Please enter a number.")

led.off()
print("Done")

Note how the LED brightness varies with the duty cycle.

7.2.2.1 Using PWM toControl aMicroservo Servomotors are actuators that allow you to addmo‑
tion to a system. They’re useful because you can specify an angle to turn and the micro servo will
automatically adjust the position for you. An ordinary motor will simply turn when power is applied,
but the micro servo includes electronics, gears, and a feedback sensor to control the position of the
output. Servos typically comewithmultiple attachments, suchaswheels or levers (knownas “horns”)
that attach to the shaft and can be coupled to whatever mechanical device they are operating.

Servo motors are typically controlled using PWM signals. The angular position of the servo motor is
typically set by the length of a control pulse, one that is typically sent roughly every 20 milliseconds.
By precisely setting the width of the pulse, one can adjust the position of the servo.

It is important to have a stable PWM signal to avoid jitter in the servomotor, hence it’s recommended
to use hardware PWM signals rather than software PWM signals. Hardware PWM signals use dedicated
hardware to generate a PWM signal directly whereas software PWM relies on software timers to turn a

Derek C. Schuurman 101

Exploring Computer Science with the Raspberry Pi

pulse on and off, and is therefore subject to various software latencies. The Raspberry Pi has support
for both hardware and software PWMs.

7.3 GPIO Serial Communications

The Raspberry Pi has three types of serial interface on the GPIO header:

1. I2C (Inter‑Integrated‑Circuit bus)
2. SPI (Serial Peripheral Interface)
3. serial UART (Universal Asynchronous Receiver/Transmitter)

The serialUARTwasmentionedbriefly in section1.6.1, and the twoother serial interfaces are explored
further in the following two sections.

7.3.1 Using I2C

Certain GPIO pins also be used to perform I2C communications. I2C (Inter‑Integrated Circuit) is a syn‑
chronous serial bus used to connect peripheral chips to processors andmicrocontrollers. I2C requires
only two bidirectional wires: the serial data line (SDA) and serial clock line (SCL).

A set of I2C command line tools can be installed as follows:

sudo apt-get install i2c-tools

In order for these towork, the I2C kernelmodule should be enabled using theraspi-config utility.
Next, ensure your username is in the group permissions for talking to I2C devices as follows:

sudo usermod -a -G i2c user

where user is set to your username. You can then scan the I2C bus for devices as follows:

i2cdetect 1

If an I2C device is present and wired properly, you should see a device reported along with its I2C
address. To query a specific device, issue the following command:

i2cget -y 1 address 0 b

where address is the I2C address of the device you are interested in querying. If everything is wired
correctly and functioning, you should a see value returned from this query.

Question: What value is returned from the i2cget command? Which base is this number displayed
in and what are the units?

Derek C. Schuurman 102

Exploring Computer Science with the Raspberry Pi

7.3.1.1 I2C Temperature Sensor Example An example of a device that uses an I2C interface is the
TC74 temperature sensor. The TC74 temperature sensor comes in a TO‑220 package with five legs.
Each of the five leads on the device are summarized in the table below (and described in more detail
in the datasheet):

Pin number Description

1 No connect

2 I2C Serial Data (SDA)

3 System Ground (GND)

4 I2C Serial Clock (SCLK)

5 Supply Voltage (VDD)

The TC74 communicates using an I2C serial connection and requires two pullup resistors on the SDA
a SCLK lines. These pullup resistors should be placed from the SDA and SCLK lines to the VDD supply
and should have a value of around 4.7kohms. For the TC74A0‑3.3VAT part number, the supply voltage
should be set to 3.3volts.

Note that there are variants of the TC74 where the nominal VDD is 5volts. See the datasheet for
more details.

To connect the temperature sensor to aRaspberry Pi using the I2C interface, one canuse abreadboard
as shown in the diagram and photo below. Note that the leads of the TC74 device will need to be
spread slightly so that it can be inserted into a breadboard. Consult a GPIO pinout diagram to ensure
your wiring is correct (in particular, do not confuse the 3.3V and 5V pins on the GPIO since they are
next to each other). An image of the complete wiring is shown below.

Derek C. Schuurman 103

http://ww1.microchip.com/downloads/en/DeviceDoc/21462D.pdf
https://pinout.xyz/

Exploring Computer Science with the Raspberry Pi

Once the wiring is complete, power up your Raspberry Pi. Ensure the I2C command line tools are
installed, the I2C kernelmodule enabled, and the grouppermissions set as described in the preceding
section. Next, scan the I2C bus for the TC74 temperature sensor to ensure it can be found:

i2cdetect 1

If the TC74 is present and wired properly, you should see a device reported at address 48hex. Next,
test if it is possible to read the temperature from that address as follows:

i2cget -y 1 0x48 0 b

If everything is wired correctly and functioning, you should see a value returned from this query.

Next, install the systemmanagement bus library for accessing the I2C bus in Python as follows:

sudo apt-get install python3-smbus

The SMBus enables I2C for communications and canbeused to communicatewith simple devices. We
can test the sensor by creating and running the program below:

This program periodically reads an I2C TC74 temperature sensor
and prints the reading
import smbus
import time

constants
BUS = 1 # I2C bus number
ADDRESS = 0x48 # TC74 I2C bus address
DELAY = 0.5 # delay between reads

Connect to I2C bus

Derek C. Schuurman 104

Exploring Computer Science with the Raspberry Pi

bus = smbus.SMBus(BUS)

try:
while True:

temp = bus.read_byte(ADDRESS)
print(f'{temp} degrees C')
time.sleep(DELAY)

except KeyboardInterrupt:
bus.close()
print('Done')

Run the program and verify that the temperature sensor is being read from the I2C bus.

7.3.2 The SPI Interface

Another standard interface is SPI (Serial Peripheral Interface). SPI is used for communications be‑
tween integrated circuits.

Before using SPI,make sure it is enabled using theraspi-config tool first. The presence of the SPI
kernel modules can be verified by typing:

lsmod | grep spi

Next, run the following command:

ls -l /dev/spi*

This command lists device files that indicate thepresenceof SPI interfaces, and two shouldbepresent.
An example of a SPI device is the MCP3008, an analog‑to‑digital converter (or A/D converter). This
device could communicate with the Raspberry Pi by directly wiring it to special purpose SPI pins in
the GPIO.

7.4 Introduction to MQTT for IoT

A Raspberry Pi equippedwith sensors and actuators can be controlled andmonitored usingmachine‑
to‑machine (M2M) communications. M2M provides an important enabling technology for applica‑
tions like IoT (the Internet of Things). One type ofM2M is a protocol calledMessageQueuing Telemetry
Transport Protocol or MQTT. MQTT is a bandwidth‑efficient, lightweight protocol allowing clients to
publish and subscribe data to a special “broker” server.

Data sensors (like the temperature sensor shown in figure 19) use MQTT to publish data to a broker
and clients can monitor that data by subscribing to a broker. Publishers and subscribers don’t need
to know each other, only one connection to the broker is required. An advantage of this is approach is

Derek C. Schuurman 105

https://cdn-shop.adafruit.com/datasheets/MCP3008.pdf
https://pinout.xyz/pinout/spi
https://pinout.xyz/pinout/spi

Exploring Computer Science with the Raspberry Pi

Figure 19: A diagram illustrating a temperature device using MQTT to publish temperature data to
clients.

that IoTdevices can remainbehinda firewall since clientsdonotneed todirectly connect to thedevice.
Moreover, subscribers canporentially receivedata frommanydifferentpublishers, andpublishers can
send data to many different subscribers.

An MQTT packet must include an MQTT topic, which is a string that describes the data and is used by
the broker to filtermessages for each client. A topic consists of one ormore topic levels separated by a
forward slash. For example, Calvin/North Hall/NH296/temperature is a topic string with
a top level of Calvinwith various sub‑topic levels. The rules for topic strings include:

• a topic must have at least 1 character
• a topic may contain spaces
• topics are case‑sensitive

Clients can use wildcards to subscribe to multiple topics at once. For example, the topic string
Calvin/NorthHall/+/temperature will subscribe to all the temperature topics in Calvin’s
North Hall. Multi‑level wildcards can also be used, for example, Calvin/NorthHall/# subscribes
to all topic strings in Calvin’s North Hall, Topics beginning with $ are used for internal statistics, for
example $SYS/broker/uptime shows the time that the broker has been up‑and‑running.

The payload of an MQTT packet is data‑agnostic, so a programmer can choose how the payload is
structured. An MQTT payload is made up of bytes andmay contain:

• Strings
• Binary data
• JSON (JavaScript Object Notation)

Derek C. Schuurman 106

Exploring Computer Science with the Raspberry Pi

7.4.1 Sending MQTTmessages from the command line

The EclipseMosquitto project provides an open sourceMQTTmessage broker and tools. To install the
mosquitto client tools, enter the following:

sudo apt install mosquitto-clients

These client tools will allow you to publish and subscribemessages to a broker. For this guide, wewill
make use of a public MQTT broker. Two options are mqtt.eclipse.org or test.mosquitto.
org. These public MQTT brokers are open and do not require usernames or passwords (which comes
with some security implications).

To send an MQTTmessage to a broker using the command line, type:

mosquitto_sub -h test.mosquitto.org -t raspberry/test

This command uses the MQTT protocol to subscribewith the broker server test.mosquitto.org
to the topic raspberry/test.

Next, switch to another terminal on your local Raspberry Pi (or use another Raspberry Pi) and publish
a message to the same topic and broker server by entering the following:

mosquitto_pub -t raspberry/test -m "Hello World" -h test.mosquitto.org

Note that after you enter the above command you should see the “Hello World” message appear
where you subscribed to the broker. You have now successfully transfered a message using MQTT.
Note that the message was transferred without needing to know the IP address of the publisher or
subscriber since messages are nicely handled through a broker server.

7.4.2 Controlling an LED using Python and MQTT

Python programs can be written to publish and subscribe to MQTT messages. To begin, install the
Python MQTT library on your Raspberry Pi using the command line as follows:

sudo pip3 install paho-mqtt

Next, consider the GPIO controlled LED as shown in Figure 17. MQTT can be used to control this LED
for a remote Raspberry Pi using the following code:

from gpiozero import LED
import paho.mqtt.client as mqtt

Constants
TOPIC = 'raspberry/LED'
PORT = 1883

Derek C. Schuurman 107

https://mosquitto.org/

Exploring Computer Science with the Raspberry Pi

QOS = 0
KEEPALIVE = 60

Set hostname for MQTT broker
BROKER = 'test.mosquitto.org'

Configure GPIO for LED output
led = LED(16)

Callback when a connection has been established with the MQTT broker
def on_connect(client, userdata, flags, rc):

if rc == 0:
print(f'Connected to {BROKER} successful.')

else:
print(f'Connection to {BROKER} failed. Return code={rc}')

Callback when client receives a message from the broker to toggle LED
state

def on_message(client, data, msg):
print(f'MQTT message received -> topic:{msg.topic}, message:{msg.

payload}')
if msg.topic == TOPIC:

if led.value == 1:
led.off()
print("LED off")

else:
led.on()
print("LED on")

Setup MQTT client and callbacks
client = mqtt.Client()
client.on_connect = on_connect
client.on_message = on_message

Connect to MQTT broker and subscribe to the topic
client.connect(BROKER, PORT, KEEPALIVE)
client.subscribe(TOPIC, qos=QOS)

try:
client.loop_forever()

except KeyboardInterrupt:
client.disconnect()
led.close()
print('Done')

This program subscribes to a broker andwaits for certainMQTTmessages to remotely control the LED.
For example, the following command issued from a remote computer will toggle the state of the LED
on the Raspberry Pi:

mosquitto_pub -t raspberry/LED -m "test" -h test.mosquitto.org

Derek C. Schuurman 108

Exploring Computer Science with the Raspberry Pi

Each time anMQTTmessage is receivedwith the topic raspberry/LED, the state of the LEDwill be
toggled on or off.

Note there are security implications since this code uses a public MQTT broker and these MQTT
messages are sent in the clear. Anyone could potentially publish messages to the public broker
with the same topic and therefore control the LED. There are ways to encrypt and authenticate
MQTTmessages that are beyond the scope of this guide.

For more information about MQTT, see the MQTT webpage and the Mosquitto project webpage.

7.4.3 Using MQTT to control Zigbee Devices

It is also possible to use MQTT on the Raspberry Pi to control a network of smart devices and sensors
connectedover a Zigbeewireless network. Zigbee is built on the IEEE 802.15.4 specification to enable
a low‑cost, low‑power wireless network of smart devices for home automation. There are a plethora
of Zigbee devices available for sensing things like temperature, pressure, and humidity and to control
devices such as lights and switches. Some example of Zigbee devices that have been used in the
author’s home are illustrated in the figure below.

Figure 20: Various Zigbee devices that can be used for home automation.

Zigbee2MQTT is a program that provides awireless bridge between Zigbee andMQTT and thus allows
you to control Zigbee devices through MQTTmessages.

The first step is to setup a local MQTT broker using mosquitto. This can be installed alongside the
mosquitto client utilities on the command‑line as follows:

sudo apt install -y mosquitto mosquitto-clients

Derek C. Schuurman 109

https://mqtt.org/
https://mosquitto.org/
https://en.wikipedia.org/wiki/Zigbee
https://www.zigbee2mqtt.io/

Exploring Computer Science with the Raspberry Pi

We can configure mosquitto to act as a local MQTT broker and listen only on the local loopback
interface by adding the following lines in /etc/mosquitto/conf.d/local.conf:

listener 1883 127.0.0.1
allow_anonymous true

Next, enable the mosquitto broker service as follows:

sudo systemctl enable mosquitto.service

Ensure the mosquitto service is now running by typing:

sudo service mosquitto status

Note that any service started on the Raspberry Pi that opens a port exposes you to potential
security issues.

Next, there are several dependencies for Zigbee2MTT that need to be installed from the command‑
line as follows:

sudo apt-get install -y npm git make g++ gcc

Unfortunately, the Raspberry Pi repos may have an older version of the nodejs package, and Zig‑
bee2MQTT requires a recent version of nodejs. You can add the repository and install a recent version
of nodejs as follows:

curl -fsSL https://deb.nodesource.com/setup_lts.x | sudo -E bash -
sudo apt install nodejs

Once the dependencies are installed, Zigbee2MQTT can be installed from github by typing the follow‑
ing commands:

sudo mkdir /opt/zigbee2mqtt
sudo chown -R ${USER}: /opt/zigbee2mqtt
git clone --depth 1 https://github.com/Koenkk/zigbee2mqtt.git /opt/

zigbee2mqtt
cd /opt/zigbee2mqtt
npm ci

Note that the npm cimay produce some warnings which can be ignored. Zigbee2MQTT requires a
YAML configuration file which may be edited by typing:

sudo nano /opt/zigbee2mqtt/data/configuration.yaml

Edit the configuration file so that it includes the following settings:

homeassistant: false

Derek C. Schuurman 110

https://en.wikipedia.org/wiki/YAML

Exploring Computer Science with the Raspberry Pi

permit_join: true

MQTT settings
mqtt:
base_topic: zigbee2mqtt
server: 'mqtt://127.0.0.1'

Location of Zigbee USB adapter
serial:
port: /dev/ttyACM0

use a custom network key
advanced:

network_key: GENERATE

Start web frontend
frontend:
port: 8081

Enable over-the-air (OTA) updates for devices
ota:

update_check_interval: 1440
disable_automatic_update_check: false

Next, insert a Zigbee adapter into a USB port on the Raspberry Pi. The configuration above assumes
the Zigbee USB adapter appears as /dev/ttyACM0. You can use the dmesg command to find the
device file associated with your particular Zigbee USB adapter and then update the configuration file
accordingly. Rather than hard‑coding a unique network key, the network_key setting used above
generates a new random key when Zigbee2MQTT is first run.

Security Notes

It’s recommended to disable permit_join after all the Zigbee devices have been paired with
your Zigbee adapter to prevent further devices from attempting to join and possibly exposing
the network key.

Note that the frontend setting provides a web frontend at a specified port for viewing the
Zigbee network. While this can be useful for setup and debugging, you may wish to disable it
later.

It is recommended that over‑the‑air (OTA) updates be enabled for all devices to keep them up‑
to‑date.

Once the setupand configuration are complete, ensure theZigbeeUSBadapter is inserted in theRasp‑
berry Pi and start Zigbee2MQTT as follows:

cd /opt/zigbee2mqtt
npm start

Derek C. Schuurman 111

Exploring Computer Science with the Raspberry Pi

This will build and launch zigbee2mqtt from the command‑line. Once the it builds and launches
successfully, you can exit the program by hitting ctrl-c. To launch automatically on boot under
Linux, setup Zigbee2MQTT to run using systemctl. For more detailed informatoin about installing
Zigbee2MQTT, refer to the official Zigbee2MQTT installation instructions.

Next, we need to establish a network of Zigbee devices by pairing each new device with the Zigbee
hub on the Raspberry Pi. Zigbee2MQTT supports a plethora of Zigbee devices and a friendly device
webpage includes notes on compatibility, pairing, and details on what values are exposed.

7.4.3.1 Pairing Zigbee devices Pairing can be easily accomplished using the web frontend to Zig‑
bee2MQTT. The web frontend can be found by pointing a web browser to the IP address of the Rasp‑
berryPi and theport number specified in theconfiguration.yaml file (port8081 in the example
file above). In theweb frontend, click theDevices tab and then the button labelledPermit join
(All). Once this button is clicked a countdownwill proceed duringwhich time newdevices can be

paired to the Zigbee network (typically the countdown lasts for 255 seconds).

Typically a new device is paired by performing a factory reset of the device. The way to perform a
factory reset varies by device type and manufacturer. For example, some bulbs can be factory reset
by toggling the power a certain number of times and other devices can be factory reset using a reset
button in a small pinhole. A few moments after resetting a device, the web page should report the
pairing of the device. Clicking on the devices tab on the web page should display a list of paired de‑
vices along with eachmanufacturer, model, and IEEE address. The web frontend providesmany nifty
features like displaying a network map and the ability to perform updates on connected devices.

In addition to the IEEE address each Zigbee device may be configured with a “friendly name.” By de‑
fault, the “friendly name” is initialized to the IEEE address, but it is recommended that you assign a
moremeaningful “friendly name”. For example, a bulb could be named “bulb1” or “porch light”. This
allows devices to be controlled and referenced using a name rather than relying on a cumbersome
IEEE address. Keep a list of the “friendly names” since these will be needed later to control the de‑
vices.

7.4.3.2 Controlling Zigbee devices over MQTT Once devices have been paired, they can be con‑
trolled simply by sending specially crafted MQTTmessages to the local broker. Thesemessagesmust
be published to the topic zigbee2mqtt/FRIENDLY_NAME/set where FRIENDLY_NAME is the
friendly name for a device. In the case of a bulb or smartplug, sending amessage of “ON” or “OFF” to
the appropriate topic for the device will turn the device on or off.

MQTTmessagescanbesent fromthecommand lineon theRaspberryPiusing tools includedwithwith

Derek C. Schuurman 112

https://www.zigbee2mqtt.io/guide/installation/01_linux.html#starting-zigbee2mqtt
https://www.zigbee2mqtt.io/guide/installation/01_linux.html#installing
https://www.zigbee2mqtt.io/supported-devices/
https://www.zigbee2mqtt.io/supported-devices/

Exploring Computer Science with the Raspberry Pi

the mosquitto-clients package. For example, to turn on a light bulb with the friendly name of
“bulb1” using the mostquitto client tool, type:

mosquitto_pub -h 127.0.0.1 -t zigbee2mqtt/bulb1/set -m "ON"

where 127.0.0.1 is the local loopback address to connect to the local MQTT broker and
zigbee2mqtt/bulb1/set is the MQTT topic to control the settings for the device with the
friendly name bulb1.

By subscribing the MQTT topic for a sensor you can receive updates from a sensor. Consult the online
Zigbee2MQTT documentation for a complete list of MQTT topics and messages. For an example of
using a Raspberry Pi withMQTT, Zigbee, and Python in a smart home application for controlling bulbs
andmonitoring sensors, visit the pi‑home project.

7.5 Camera Sensors

The Raspberry Pi includes a dedicated camera port on the circuit board located between the Ethernet
port and theHDMI port. This port can be used to install the standard Raspberry Pi Camera or the NoIR
Camerawhich canbeused in low light applications. Removepowerbefore installing the camera cable.
Be sure to consult the cameramanual to ensure it is inserted properly and is snuggly insertedwith the
right cable orientation.

Once it is installed, you can test your camera by entering the following command:

libcamera-still -o output.jpg

If the command executes without error, a new image file named output.jpg should be created.

7.5.1 OpenCV

OpenCV is a comprehensive computer vision library. It contains over 2500 algorithms and is operated
by the non‑profit [Open Source Vision Foundation]. It supports a wide variety of platforms and com‑
puter languages. For example, to install the OpenCV library for Python, type: To install these libraries,
enter:

pip3 install opencv-python

The following is a sample Python program that uses OpenCV to capture an image and store it to a
file.

import sys
import cv2

Derek C. Schuurman 113

https://www.zigbee2mqtt.io/guide/usage/mqtt_topics_and_messages.html
https://github.com/dschuurman/pi-home
https://opencv.org/

Exploring Computer Science with the Raspberry Pi

Initialize camera
print("Initializing camera...")
cap = cv2.VideoCapture(0)
if not cap.isOpened():

print('Cannot open camera...')
sys.exit(1)

Capture a frame
ret, frame = cap.read()
if not ret:

print('Frame capture failed...')
sys.exit(1)

Save frame
cv2.imwrite("image.jpg", frame)
cap.release()

7.5.2 AprilTags

AprilTags are a system of visual tags developed by researchers at the University of Michigan for use
in robotics and other computer vision applications. Like QR codes, AprilTags are conceptually two‑
dimensional bar codes like the ones shown in Figure 21. However, AprilTags have simpler data pay‑
loads than QR codes (typically between 4 and 12 bits). In fact, AprilTags were specifically designed
to work well with embedded devices, providing very good performance even with modest hardware
(like the Raspberry Pi).

Figure 21: Examples of different AprilTags.

A simple python program can bemade to demonstrate the use of AprilTags as follows. Declare a new
Python virtual environment named apriltags and activate it as follows:

python3 -m venv --system-site-packages apriltags
source apriltags/bin/activate

Yourprompt should change indicating that youarenow in theapriltags virtual environment. Next,
install the required Python libraries. Wewill use the Picamera2 library for image capture, the OpenCV
library for image processing, and the pupil‑apriltags library for AprilTags. To install these libraries,
enter:

Derek C. Schuurman 114

https://april.eecs.umich.edu/software/apriltag
https://pypi.org/project/picamera2/
https://opencv.org/
https://pypi.org/project/pupil-apriltags/

Exploring Computer Science with the Raspberry Pi

pip3 install opencv-python pupil-apriltags picamera2

Next enter the program as follows:

import cv2
from picamera2 import Picamera2
from pupil_apriltags import Detector

Initialize camera
print("Initializing camera...")
picam2 = Picamera2()
config = picam2.create_still_configuration()
picam2.configure(config)
picam2.start()

initialize AprilTag detector
detector = Detector()

Continuously capture frames from the camera
try:

while True:
grab a frame and convert to grayscale
frame = picam2.capture_array()
img = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

Detect any AprilTags
results = detector.detect(img)
Print detection details for all tags
for r in results:

print(f"AprilTag detected! ID: {r.tag_id}, Family: {r.
tag_family}," f"Decision Margin: {r.decision_margin:.2f}")

except KeyboardInterrupt:
print('Done')
picam2.stop()

This program will print details about any AprilTags detected by the camera. To test the detection
program, you will need to print out an AprilTag image from the AprilTag image repository. Note that
there are many unique AprilTags available (different families and IDs of tags), but for now select any
one of them. Note also that the image dimensions are small and will need to be rescaled before they
are printed.

Test the code and ensure that you can detect an AprilTag when it is placed in front of the camera. Try
moving the page closer, further back, and rotating the AprilTag. Note the robustness of the detector.

In the chapter that follows on artifical intelligence, we provide additional examples of image classifi‑
cation and recognition.

Derek C. Schuurman 115

https://github.com/AprilRobotics/apriltag-imgs
https://github.com/AprilRobotics/apriltag-imgs/blob/master/README.md

Exploring Computer Science with the Raspberry Pi

7.5.3 Computer Vision at the Edge

Computer vision at the edge refers to using edge devices to process visual data instead of sending the
data to the cloud. Computer vision at the edge is a kind of “fog computing” which uses edge devices
(or near‑edgedevices) to carry out processing rather than sending rawdata to the cloud. Oneexample
of computer vision at the edge would be the recognition and classification of AprilTags, which could
be computed locally on the Raspberry Pi and the results could then be sent to the cloud. Moreover,
computer vision at the edge could useMQTT to send results to a broker in the cloud. Recall thatMQTT
is designed for small payloads, so it should not be used to send images or video frames. Rather, MQTT
could be used to send the results of image computations, such as classification or measurement re‑
sults (such as AprilTag detection data). See the previous section for a detailed description of MQTT.

The Raspberry Pi is well suited to be an edge device for computer vision. It supports a variety of dif‑
ferent types of cameras, and there is now even a Raspberry Pi AI Camera which can be used to deploy
neural network models directly in the camera module! The next chapter will go into depth about AI
and how to work with it on the Raspberry Pi.

Derek C. Schuurman 116

https://www.raspberrypi.com/products/ai-camera/

Exploring Computer Science with the Raspberry Pi

8 Exploring Artificial Intelligence

8.1 Introduction

In the early 2000’s, I pursued aPhD in the field of robotics and computer vision. At the time, the field of
AIwas climbing out of an “AIwinter,” and I foundmyself attracted to newermachine learningmethods
that were being used for image recognition. I recall being astounded at the profound elegance of
“training” a computer with a set of example images and then observing howwell it could identify new
images that were not part of the original training set. Even those early machine‑learning techniques
seemedmagical.

In the years since I completed my graduate work, a myriad of helpful machine learning tools and li‑
braries have emerged. What follows are some examples of machine learning tools that can be used
with the Raspberry Pi.

8.2 Hardware and Software Support for AI

Asdiscussed inaprevious chapter, recentmodels of theRaspberryPi processor includesmultipleARM
cores. Despite its respectable hardware capabilities, the Raspberry Pi may struggle with the compu‑
tational demands of more demanding artificial intelligence (AI) applications. For more demanding
applications, there is a Raspberry Pi add‑on board— referred to as a HAT (Hardware Attached on Top)
— that provides an NPU (Neural Processing Unit) to accelerate machine learning computations. The
Raspberry Pi AI HAT+ provides a high‑performance, power‑efficient AI processor for the Raspberry Pi
5.

Besides hardware support, there are a wide variety of powerful machine learning libraries which can
be used with the Raspberry Pi, including scikit‑learn and LiteRT. Python includes a number of power‑
ful supporting libraries, suchasMatplotlib andplotly for plotting, NumPy for providing fast operations
on arrays, and Pandas for data analysis and manipulation. The following sections provide examples
of some of these libraries in action.

8.3 SciKit Learn

SciKit Learn is an open source machine learning library that works with Python. SciKit Learn pro‑
vides many different features, including regression and clustering algorithms, Principal Component
Analysis (PCA), Linear Discriminant Analysis (LDA), and Support Vector Machines (SVMs).

All forms of machine learning require a dataset which is used for training. SciKit includes a selection
of toy datasets that can be used to experiment with themachine learning libraries. The following sec‑
tions demonstrate PCA and SVMs using the classic iris flower dataset which is part of the collection of

Derek C. Schuurman 117

https://www.raspberrypi.com/products/ai-hat/
https://scikit-learn.org/
https://ai.google.dev/edge/litert
https://numpy.org/
https://pandas.pydata.org/
https://scikit-learn.org/stable/datasets/toy_dataset.html
https://en.wikipedia.org/wiki/Iris_flower_data_set

Exploring Computer Science with the Raspberry Pi

toy datasets. This iris datasetwas originally compiled by biologist Ronald Fisher in awell‑known 1936
paper. This dataset comprises samples of three species of the Iris flower (Iris setosa, Iris virginica, and
Iris versicolor) andmeasurements of the length and the width of both the sepals1 and the petals. The
SciKit Learn library includes this iris dataset for testing and demonstration purposes. The followig
Python code uses Matplotlib to plot the sepal width versus the sepal length for each of the three iris
classes in the dataset.

from sklearn import datasets
import matplotlib.pyplot as plt

Load the classic iris dataset
iris = datasets.load_iris()

Plot sepal lengths vs. widths for irises in dataset
fig, ax = plt.subplots()
scatter = ax.scatter(iris.data[:, 0], iris.data[:, 1], c=iris.target)
ax.set_title("Plot of Iris features: sepal lengths and widths")
ax.set(xlabel=iris.feature_names[0], ylabel=iris.feature_names[1])
fig = ax.legend(scatter.legend_elements()[0], iris.target_names, loc="best

", title="Classes of Irises")
plt.show()

Running this code results in the following plot of the iris dataset:

Figure 22: Iris flower dataset plotted with sepal length and width features

1A sepal is a green leaf‑like structure at the base of a flower.

Derek C. Schuurman 118

Exploring Computer Science with the Raspberry Pi

8.3.1 Linear Discriminate Analysis (LDA)

Linear Discriminate Analysis (LDA) is a technique that finds a linear combination of features to best
separate the classes in a dataset. A program that performs an LDA transformation on the iris dataset
is shown in the program below.

from sklearn import datasets
import matplotlib.pyplot as plt
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

Load the classic iris dataset
iris = datasets.load_iris()

transform iris dataset using LDA
lda = LinearDiscriminantAnalysis(n_components=2)
X = lda.fit_transform(iris.data, iris.target)

Show plot with title and legend
fig, ax = plt.subplots()
scatter = ax.scatter(X[:, 0], X[:, 1], c=iris.target)
ax.set_title("Plot of LDA features of IRIS dataset")
fig = ax.legend(scatter.legend_elements()[0],

iris.target_names, loc="best", title="Classes of irises")
plt.show()

The plot that is produced by this code is shown below.

Figure 23: Iris flower dataset transformed with LDA

Derek C. Schuurman 119

Exploring Computer Science with the Raspberry Pi

Comparing thisplot to theone shown inFigure22 clearly shows that theLDA transformation seperates
the different classes of irises much better than just using sepal length and width as features.

8.3.2 Principal Component Analysis (PCA)

Next, wewill use Principal Component Analysis (PCA) to transform the iris sepal lengths andwidths
to another set of features based on eigenvectors computed from the dataset. These eigenvectors
provide an orthonormal axis that captures the statistically most significant directions in the data. To
perform a PCA transformation on iris.data, one can use SciKit Learn library and the transformed
data can be plotted on a new set of axes defined by the first two eigenvectors as follows:

from sklearn import datasets
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA

Load the classic iris dataset
iris = datasets.load_iris()

#legends, ax = plt.subplots()
fig, ax = plt.subplots()

transform sepal length into eigenspace using PCA
pca = PCA(n_components=2).fit_transform(iris.data)

Show plot with titles and axis names
scatter = ax.scatter(pca[:, 0], pca[:, 1], c=iris.target)
ax.set_title("Plot of first two PCA dimensions")
ax.set_xlabel("First Eigenvector")
ax.set_ylabel("Second Eigenvector")
fig = ax.legend(scatter.legend_elements()[0], iris.target_names,

loc="lower right", title="Classes of irises")
plt.show()

This produces a plot using the eigenvectors as the axes as shown below:

Note that the plot of the iris data using the Eigenvector basis functions also appears to separate the
classesmore clearly. This is due to the fact thatPCAproduces eigenvector basis functions that capture
the statistically most significant features in the data.

8.3.3 Support Vector Machines (SVM)

SciKit Learn can also be used with a machine learning approach called Support Vector Machines
(SVMs). The goal of an SVM is to determine a hyperplane which defines the boundary between

Derek C. Schuurman 120

Exploring Computer Science with the Raspberry Pi

Figure 24: Iris flower dataset plotted using Eigenvectors

different data points in order to classify them appropriately. SciKit Learn includes a library for
machine learning using an SVM.

The following example uses the iris flower dataset and uses SVM to computer a hyperplane between
the different iris classes. This example is derived from the SciKit Learn SVM examples found on the
SciKit documentation pages.

import matplotlib.pyplot as plt
from sklearn import datasets, svm
from sklearn.inspection import DecisionBoundaryDisplay

import classic iris dataset
iris = datasets.load_iris()

Take the first two features from the iris dataset (sepal width and
length)

X = iris.data[:, :2]
y = iris.target

create an SVM to fit the data
clf = svm.SVC(kernel="linear", C=1.0)
clf.fit(X, y)

Plot the data and support vectors
fig, ax = plt.subplots()
X0, X1 = X[:, 0], X[:, 1]

Derek C. Schuurman 121

https://scikit-learn.org/stable/auto_examples/svm/plot_iris_svc.html

Exploring Computer Science with the Raspberry Pi

disp = DecisionBoundaryDisplay.from_estimator(clf, X,
response_method="predict", cmap=plt.cm.coolwarm, alpha=0.8,
ax=ax,xlabel=iris.feature_names[0], ylabel=iris.feature_names[1])

ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors="k")
ax.set_title('Support Vector Machine with Linear Kernel')
plt.show()

Running the above program displays the following plot, showing the sepal lengths and widths of the
iris dataset alongwith the hyperplane boundaries which can be used for classification. Note that SVM
algorithm was not able to compute a perfect linear decision boundary that perfectly separates the
classes. Consequently, when used to identify irises this will likely lead to occasional classification
errors.

Figure 25: Iris dataset with three classes plotted with SVM boundaries

Finally, we can project the iris dataset features into eigenspace using PCA and then dertermine the
support vectors for the new eigenspace as follows:

import matplotlib.pyplot as plt
from sklearn import datasets, svm
from sklearn.inspection import DecisionBoundaryDisplay
from sklearn.decomposition import PCA

import classic iris dataset
iris = datasets.load_iris()

transform the iris dataset features into eigenspace using PCA

Derek C. Schuurman 122

Exploring Computer Science with the Raspberry Pi

pca = PCA(n_components=2).fit_transform(iris.data)

create an SVM to fit the 2D eigenspace
clf = svm.SVC(kernel="linear", C=1.0)
clf.fit(pca, iris.target)

Plot the PCA features and support vectors
fig, ax = plt.subplots()
disp = DecisionBoundaryDisplay.from_estimator(clf, pca,

response_method="predict", cmap=plt.cm.coolwarm, alpha=0.8, ax=ax)
ax.scatter(pca[:, 0], pca[:, 1], c=iris.target,

cmap=plt.cm.coolwarm, s=20, edgecolors="k")
ax.set_title('Support Vector Machine for PCA features')
ax.set_xlabel('Eigenvector #1')
ax.set_ylabel('Eigenvector #2')
plt.show()

The resultingplot belowshows the eigenvector features and the support vector boundaries. Note that
theboundaries between iris classes ismore sharply separatedusingEigenspace features as compared
to usng just the sepal length and width as shown in Figure 25. A similar approach could be taken by
performing an LDA transformation to better separate the classes prior to computing the SVM.

Figure 26: Support Vector Machine boundaries of features in Eigenspace

Derek C. Schuurman 123

Exploring Computer Science with the Raspberry Pi

8.3.4 SVM Image Classification

A support vector machine can also be used to perform image classification. The following example
is inspired by the SciKit example on recognizing hand‑written digits and uses the hand‑written digits
dataset from the UC Irvine machine learning repository. This dataset has 1797 image samples com‑
prised of an 8𝑥8 array of pixels with 10 classes where each class refers to one digit (0‑9).

A short Python program to load the hand‑written digits dataset and display them is shown below:

import matplotlib.pyplot as plt
from sklearn import datasets, metrics, svm
from sklearn.model_selection import train_test_split

load hand-written digits dataset
digits = datasets.load_digits()

display a sample of ten hand-written digits in the dataset
fig, axes = plt.subplots(nrows=2, ncols=5)
for ax, digit in zip(axes.flatten(), digits.images):

ax.set_axis_off()
ax.imshow(digit,cmap='gray')

fig.tight_layout()
plt.show()

The plot showing ten hand‑written digits in the dataset is shown below.

Figure 27: Ten 8x8 hand‑written digits from the UC Irvine digits dataset

We can split the hand‑written digits dataset into two sets: a training set and a set for testing. SciKit
has a function for taking the larger digits dataset and splitting it in half into training and test sets as
follows:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)

where X is an array of of the features and y is a vector of labels that classify the data.

Hence we can proceed to train an SVM using half the dataset for training and then use the remaining
half of the dataset for testing. The accuracy of the SVM can be determined by comparing the digits

Derek C. Schuurman 124

https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html
https://archive.ics.uci.edu/dataset/80/optical+recognition+of+handwritten+digits

Exploring Computer Science with the Raspberry Pi

predicted by the SVMwith the actual labels for the hand‑written digits and the recognition rate can be
reported. The recognition rate is the total number of correctly identified digit images divided by the
total number of test images. The following code defines an SVM classifier based on half of the dataset
and then determines the recognition rate using the other half of the dataset as test images.

import matplotlib.pyplot as plt
from sklearn import datasets, metrics, svm
from sklearn.model_selection import train_test_split

Read digits and reshape digits as a vector of images
digits = datasets.load_digits()
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))

Create a support vector machine classifier
svm = svm.SVC()

Split the dataset: half for training and half for testing
X_train, X_test, y_train, y_test = train_test_split(

data, digits.target, test_size=0.5, shuffle=False)

Train on hand-written digits in the training set
svm.fit(X_train, y_train)

Predict the value of the digit using the testing set
predicted = svm.predict(X_test)

compute the recognition rate
matches = 0
for x in range(len(y_test)):

if y_test[x] == predicted[x]:
matches += 1

recognition_rate = (matches/len(y_test)) * 100;
print(f'Recognition rate: {recognition_rate:.2f}%')

The output of this code shows the following:

Recognition rate: 96.11%

This indicates a respectable recognition rate using an SVM for handwritten digit classification.

For more details, we can plot a confusion matrix to visualize the accuracy of a machine learning al‑
gorithm. The confusion matrix is organized into rows and columns: each row represents each of the
classes in a dataset and each column represents the predictions that were made. Ideally, the actual
classes and the predictions will perfectly align such that the diagonal of the confusion matrix is pop‑
ulated with 100’s and with 0’s everywhere else. The martix diagonal corresponds to true recognition
rates whereas all other cells represent the occurences of false classifications. SciKit includes a nifty
library that can create a beautifully formatted confusion matrix as follows:

Derek C. Schuurman 125

Exploring Computer Science with the Raspberry Pi

import matplotlib.pyplot as plt
from sklearn import datasets, metrics, svm
from sklearn.model_selection import train_test_split

Read digits and reshape digits as a vector of images
digits = datasets.load_digits()
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))

Create a support vector machine classifier
svm = svm.SVC()

Split the dataset: half for training and half for testing
X_train, X_test, y_train, y_test = train_test_split(

data, digits.target, test_size=0.5, shuffle=False)

Train on hand-written digits in the training set
svm.fit(X_train, y_train)

Predict the value of the digit using the testing set
predicted = svm.predict(X_test)

display the resulting Confusion Matrix
disp = metrics.ConfusionMatrixDisplay.from_predictions(y_test, predicted)
disp.figure_.suptitle("Confusion Matrix")
plt.show()

The resulting confusion matrix is shown below.

More information about SciKit Learn withmany nifty examples can be found on the SciKit Learn web‑
pages.

8.4 LiteRT

LiteRT provides an open source library that can be used to develop and train machine learning mod‑
els. LiteRT was developed by the folks at Google and released under an open source license. It in‑
cludes libraries that can be used with Python, C++, or Java. While the standard TensorFlow package
has large footprint, a “lite” version is also available that is suitable for running on the Raspberry Pi. To
install a “lite” version of TensorFlow for Python on the Raspberry Pi, type:

python3 -m pip install ai-edge-litert

Wecannowuse LiteRT toperform tasks like classifying objects in images. While it is possible to collect
your own image set and train your own models, there are a variety of pre‑trained models available.
To run a demo using a pre‑trained model, follow the instructions on the Python image classification
demo page.

Derek C. Schuurman 126

https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://ai.google.dev/edge/mediapipe/solutions/vision/image_classifier/python
https://ai.google.dev/edge/mediapipe/solutions/vision/image_classifier/python

Exploring Computer Science with the Raspberry Pi

Figure 28: Confusion Matrix for SVM classification of hand‑written digits dataset

For more information, consult the LiteRT documentation.

8.5 Large Language Models (LLMs)

A large language model (LLM) is an AI model designed for tasks such as language generation. These
models are built by learning statistics on very large data sets of text resulting in models with a vast
number of parameters. LLMs require substantial computing resources, but a modest model can be
run on the Raspberry Pi 5 using an open source tool called ollama.

To begin, download the ollamamodel as follows:

curl -fsSL https://ollama.com/install.sh | sh

The download will take several minutes, but you should receive a message when it completes. Sadly,
at the time of writing the model could not take advantage of the GPU in the Raspberry Pi and so it
was set to run in “CPU‑only mode” which results in slower performance. You can can try running
with a small model called tinydolphin which has only 1.1 billion paramters. To install and run the
tinydolphinmodel, type:

ollama run tinydolphin

Derek C. Schuurman 127

https://ai.google.dev/edge/litert
https://ollama.com/
https://ollama.com/library/tinydolphin

Exploring Computer Science with the Raspberry Pi

After a few minutes of downloads, a prompt should appear. Try testing the LLM by typing a prompt,
such as the following:

>>> Give 3 reasons why the Rasperry Pi is cool.

While this model is modest and running with “CPU‑only” is slow, this platform should allow for some
fun experimentation with LLMs. To explore othermodels, consult the ollama library. Note thanmany
of the models will be too large to run on current versions of the Raspberry Pi.

Derek C. Schuurman 128

https://ollama.com/library

Exploring Computer Science with the Raspberry Pi

9 Other Tools for Engineers and Computer Scientists

The Raspberry Pi provides a variety of tools for computer scientists, ranging from document prepara‑
tion to software version control to a variety of mathematical and simulation tools.

9.1 Document Preparation

9.1.1 LaTeX

LaTeX is a document preparation system for high‑quality typesetting and for creating “beautiful doc‑
uments.” It is often used for making mathematical, technical or scientific documents, but it can be
used for almost any type of document. There are numerous resources available on the web describ‑
ing how to edit a LaTeX document file. To install LaTeX and its supporting files and utilities, type the
following:

sudo apt-get install texlive

You can edit your LaTeX document using any plan text editor and saving the filewith a.tex file exten‑
sion. Once you have prepared your LaTeX file, you can create a DVI (Device Independent file format)
file. To do this, run the following from the command line:

latex file.tex

If your document contains errors, LaTeX prints amessage, but if LaTeXwas successful it should gener‑
ate a DVI (Device Independent) file along with some other files. The DVI file can then be converted to
a PDF file as follows:

dvipdf file.dvi

The PDF file is a platform independent file format that can then be shared widely.

9.1.2 pandoc

Pandoc is the “swiss army knife” of document conversion—a utility that can convert documents be‑
tween amultitude of different formats. As such,pandoc is a convenient utility for the creation of PDF
or HTML files frommarkdown (in fact, this book is written in markdown using pandoc!). To convert a
markdown file to a PDF, type:

pandoc -o output.pdf input.md

Likewise, to convert frommarkdown to HTML, type:

Derek C. Schuurman 129

Exploring Computer Science with the Raspberry Pi

pandoc -s -o output.html input.md

where the -s parameter indicates that the output should produce a standalone document (ie. a com‑
plete HTML document with <head> and <body> sections).

For more details, consult the pandoc documentation.

9.1.3 PDF Utilities

The PDF Toolkit (pdftk) is a utility for PDFmanipulations in Linux. To install pdftk, type:

sudo apt install pdftk

Once installed,pdftk canbe used to performmanydifferent PDF operations from the command line.
For example, to join two files,in1.pdf andin2.pdf into a newPDF namedoutput.pdf, type:

pdftk in1.pdf in2.pdf cat output.pdf

To remove page 13 from in.pdf and create a new file called out.pdf:

pdftk in.pdf cat 1-12 14-end output out.pdf

To find out more features in pdftk, type:

pdftk --help

9.2 File Utilities

In addition to text editors, Linux includes a wide variety of nifty command line tools for working with
files, including source code files. Here are descriptions of a few of those utilities.

9.2.1 diff

A utility for comparing text files (including source code files) line‑by‑line is the diff utility. To com‑
pare two files, type:

diff -color file1.py file2.py

This will show all the differences (the “diff”) between the two files, file1.py and file2.py.

Derek C. Schuurman 130

https://pandoc.org/MANUAL.html

Exploring Computer Science with the Raspberry Pi

9.2.2 grep

Grep is a classic command to search files for the occurrence of a string of characters that matches a
specified pattern. For example, to search a file named file.txt for the word “raspberry”, type:

grep raspberry file.txt

Thiswill returnall linenumbers that include thestring“raspberry”. grepcanalsobeusedwith regular
expressions to performmore complex search. For example:

grep "^[A-Z]" file.txt

will search for all lines that beginwith a capital letter. To learnmore, consult online documents about
regular expressions.

9.2.3 hexdump

Hexdump is a file viewingutility that displays a file’s contents in hexadecimal, decimal, octal, andascii
format. This can be particularly helpful when viewing binary files. To use hexdump, type:

hexdump file.dat

where file.dat is a binary file that you want to view. For example, to view the binary file with the
ls program, type:

hexdump /usr/bin/ls

In order to display the output one screen at a time, the output from hexdump can be piped through
the more utility as follows:

hexdump /usr/bin/ls | more

9.2.4 readelf

Readelf is a program to display information about executable files in Linux in ELF format (Executable
and Linkable File Format). For example, to view information about the ls command, type:

readelf -hA /usr/bin/ls

Derek C. Schuurman 131

https://pubs.opengroup.org/onlinepubs/007908799/xbd/re.html

Exploring Computer Science with the Raspberry Pi

9.3 Software Version Control Systems

Source code management systems are used to manage the revision history of a software project. A
source code management system has a databases that stores the changes that are made to files in a
project. It can be used as a tool to allow different programmers to collaborate on a software project
by allowing them to blend andmerge the various changes that are made.

9.3.1 Using Git and GitHub

Git is a free and open source distributed version control system. Git enables you track changes to your
code and push and pull changes to remote repositories. Git is one of themost popular systems in use
today. To install git, type:

sudo apt install git

After installing git, you will need to setup your local git username and email as follows:

git config --global user.name "user_name"
git config --global user.email "email_id"

It is possible to setup your own private git server (on a Raspberry Pi or other computer). This can be
accomplished by setting up an SSH server and creating a git user and uploading public SSH keys to
allow remote users to access the server. With proper SSH keys installed, remote users can create and
push changes to a repository located on the server.

Another option is to use a publicly available cloud‑based git server, such as GitHub, GitLab, or Bit‑
Bucket. Many services include a basic free tier with limited storage or free options for students and
educators.

9.3.1.1 Example git project To initialize a new git project, type:

git init new-project

wherenew-project is the name of the project youwish to create. A new folder will with the project
name will be created. To enter the new project folder, type:

cd new-project

At this point, you can create and edit your project files. One project file that is recommended to be
created is one calledREADME.md, amarkdown file that contains information about the project. If we
create a new file called README.md, we can add it to the repository as follows:

git add README.md

Derek C. Schuurman 132

https://github.com
https://about.gitlab.com
https://bitbucket.org
https://bitbucket.org

Exploring Computer Science with the Raspberry Pi

Likewise, we can add other files that belong to the project using the git add command. Once all
the files are added, we can commit it to our repository. Use the command:

git commit -m "some_message"

The project is now ready to be uploaded to a remote repository in the cloud. For example, if you are
using GitHub, go to GitHub.com and create a new repository. Get the repository URL and return to
your local terminal and type:

git remote add origin REMOTE-URL

whereuser_name is your user name on your remote server and REMOTE-URL is the project URL on
the server. To verify that you have set the remoteURL correctly, type:

git remote -v

Once the remoteURL is properly set, you can “push” all the local changes to the remote repository by
typing:

git push -u origin main

Each time you reach a point where you want to check in the changes to your project, you can now
commit and push the project and it will be saved in the remote git repository.

Alternately, you can clone an existing git project from the cloud using:

git clone REMOTE-URL

where REMOTE-URL is the project URL on the remote server.

9.3.1.2 Git Integrationwith VScode VScode extensions for GitHub, GitLab, and various other pop‑
ular git servers exist. Install the appropriate extension, and you should be able to push, pull, and
commit changes to the remote git server fromwithin the VScode editor.

9.3.1.3 Download an existing git project The “clone” command downloads an existing git
repository to your local computer. To clone an existing git project, you will need the project URL.
Using theURL, you can clone a remote project as follows:

git clone https://github.com/gittower/git-crash-course.git

For a public repo:

$ cd folder/to/clone-into/
$ git clone https://github.com/gittower/git-crash-course.git

Derek C. Schuurman 133

https://github.com

Exploring Computer Science with the Raspberry Pi

9.3.2 Mercurial Version Control

Mercurial is friendly and relatively easy touse for thosewhoarenewtosoftware repositories. To install
with Mercurial on the Raspberry Pi, type:

sudo apt install mercurial

Once installed, you can test your installation of Mercurial by typing:

hg

If this returnsa list ofhg commands that areavailable, then theprogram is installed. Toget a complete
list of commands, type:

hg help

Note thatmercurial is invokedusing thehg command,which also happens to be the chemical symbol
for mercury on the periodic chart.

Step 2: Setup amercurial configuration file

Before you start using mercurial, you should setup a local configuration file to tell it who you are. In
local home folder, create a file called .hgrc using your favorite text editor with the following con‑
tents:

[ui]
username=Firstname Lastname username@youraddress.com
merge=internal:merge

In theusername line, substitute your ownname and email address. You are now ready tomake your
own software repository!

9.3.2.1 Example of creating aMercurial software repository A repository is a database that con‑
tains the files in a project. But wemust first indicate the files that wewant in the repository and those
that we are not interested in saving. Typically, we are interested in saving all the source code files.
However, we are not usually interested in saving all the intermediate object files and binary files since
these can always be recreated from the source files.

Within your project folder, create a new text file called .hgignore which will contain information
about the files that should be excluded from the repository. A sample .hgignore file is show be‑
low:

syntax: glob
*.class
*.o

Derek C. Schuurman 134

Exploring Computer Science with the Raspberry Pi

This file indicates that *.class files (for Java) and *.o object files (for C/C++) should be excluded
from the repository. There is no point storing files that can be easily recreated from the source files.

To initialize the repository, issue the following command fromwithin the project folder:

hg init

This starts a new repository for a project and creates a new .hg folder in the project folder. You can
now start to add and edit files within the project folder. As you do, you can check the status of this
files with respect to the repository as follows:

hg status

This shows the current status of the repository. Initially, all the files in the project folder will be listed
with a ? in front of them indicating that they are unmanaged. To add them to your mercurial reposi‑
tory, type the following:

hg add

This adds all the files in the current folder except the ones indicated by the .hgignore file. Running
the status command again will show that files are now part of the repository by placing an A in front
of each of the filenames. To remove a file from the repository, use the following command:

hg remove filename

where filename is the name of the file you want to remove from the repository

Once you are done editing your changes, you can decide to commit the current changes to the repos‑
itory. This can be accomplished by typing:

hg commit -m "message"

where you can replace the message string with a meaningful summary of the changes that were
made. Now run the status command again:

hg status

This time, no file status are displayed because all the files have been committed to the repository. We
could now delete a file as follows:

rm filename

If this is a file that was part of the repository, it can now be easily restored as follows:

hg revert filename

Derek C. Schuurman 135

Exploring Computer Science with the Raspberry Pi

You can also edit filename andmake changes. To see the differences between a file and its copy in
the repository, issue the following command:

hg diff

Subsequent updates can be committed to the repository as time goes on. You can get a complete
history of past commits that were performed by typing:

hg log

This command prints a brief summary of each change that was committed including the date, time
and name of the user who performed the commit along with any message that was saved with the
commit.

9.3.2.2 Example of using a remote repository If you setup a mercurial repository on a remote
server, you can copy and update your repository over the network using SSH. For example, to get a
copy of a project from the remote server copied over to your local machine, type:

hg clone ssh://username@server.domain/project

whereusername is your user nameon the server, and theproject is the folder nameof the project
you want to copy. You will be prompted for your password on the server. The step of entering a pass‑
word can be eliminated if you setup SSH keys.

Tobring in changes froma remote repository to a local repository, use the pull commandas follows:

hg pull ssh://username@server.domain/path/project_folder

Note that this updates the repository database, but not does not (by default) touch the files in the
working project directory. Instead, use the update command to do this as follows:

hg update

To push your changes to a remote repository, use the push command:

hg push ssh://username@server.domain/path/project_folder

Note that the push command updates the remote repository database, but does not update the ac‑
tualworking files in theproject directory sinceotherpeoplemaybeworkingon themwhile theupdate
is in progress. To update the working files in the remote project directory, issue an update on the re‑
mote server after completing the push operation.

This simple introduction should help you get startedwith small personal and teamprojects. Once you
are more comfortable with the basics, check out the Mercurial webpage to learn more.

Derek C. Schuurman 136

https://www.mercurial-scm.org/

Exploring Computer Science with the Raspberry Pi

9.4 Mathematical Tools

9.4.1 SageMath

SageMath is a free open‑source mathematics software system with many mathematical capabilities
including algebra, graph theory, numerical analysis, number theory, calculus, and statistics. Recent
apt repositories includeapackage for SageMath, but due to the computational demandsofsage it is
recommended you use amore recentmodel of the Raspberry Pi with asmuchmemory as possible.

To install sage from the apt repositories, type the following:

sudo apt install sagemath

The install process can take a long time, so feel free to walk away from your Raspberry Pi while it is
installing. Once the install is complete, you can launch the program as follows:

sage

Once sage is loaded, give it a try. For example, to add two numbers type the following at the sage
prompt:

sage: 2 + 3

To plot a graph of 𝑦 = 𝑥2 in sage, type:

sage: plot(x^2)

The following shows a prompt to determine the symbolic integration of ∫ sin(𝑥)𝑑𝑥 along with the
output from sage:

sage: integral(sin(x),x)
-cos(x)

For more information about using other powerful features found in SageMath, visit the Sage Docu‑
mentation pages.

9.4.2 Octave

GNUOctave is an open sourcemathematics program that has some similarities to Matlab. It has both
a GUI mode as well as a command line interface. To install Octave, type:

sudo apt install octave

To start octave in command line mode, type:

Derek C. Schuurman 137

https://doc.sagemath.org/html/en/
https://doc.sagemath.org/html/en/

Exploring Computer Science with the Raspberry Pi

octave-cli

Octave is particularly good at performing linear algebra operations. For example, to define a matrix
like the following:

𝑥 =
⎡
⎢⎢⎢
⎣

1 2 3
2 1 4
5 6 7

⎤
⎥⎥⎥
⎦

simply type:

x = [1 2 3; 2 1 4; 5 6 7]

To determine x𝑇 , the transpose of x, type:

x'
ans =

1 2 5
2 1 6
3 4 7

To find the eigenvalues for the matrix, simply type:

eig(x)
ans =

11.5453
-0.7892
-1.7561

To find the determinant for the matrix, type:

det(x)
ans = 16

To determine the inverse matrix, type:

inv(x)
ans =
-1.0625 0.2500 0.3125
0.3750 -0.5000 0.1250
0.4375 0.2500 -0.1875

Matrix multiplication can easily perform using the * operator as follows. For example, multiplying a
matrix by its inverse should produce the identity matrix:

x * inv(x)

Derek C. Schuurman 138

Exploring Computer Science with the Raspberry Pi

ans =
1.0000 -0.0000 0

0 1.0000 0.0000
-0.0000 0.0000 1.0000

Octave can also generate large row vectors of values. For instance, the command:

x = linspace(a ,b)

generates a row vector x of 100 points linearly spaced between and including a and b. For example,
to create a vector with 100 time steps for 0 <= 𝑡 <= 6𝜋, type:

t = linspace(0, 6*pi)

In graphical environments, octave can also be used to produce plots of vectors. To plot a sinusoid
for the range of time steps t, type:

plot(t, sin(t))

A new plot windowwill appear like the one shown below.

0 5 10 15 20
-1

-0.5

0

0.5

1

Figure 29: An octave plot of 𝑠𝑖𝑛(𝑡) for 0 <= 𝑡 <= 6𝜋

For more information about octave, visit the Octave Wiki.

Derek C. Schuurman 139

https://wiki.octave.org/Using_Octave

Exploring Computer Science with the Raspberry Pi

9.4.3 gnuplot

Gnuplot is a free portable command‑line driven graphing utility that works on many platforms. To
install gnuplot, type:

sudo apt install gnuplot

To start gnuplot, simply type: gnuplot. You can then command gnuplot to plot various mathe‑
matical functions. While plots can be saved to image files, they can also be displayed in a graphical
window (which presupposes a graphical desktop environmet). For example, to display a plot of a sine
and cosine waveform, type:

plot [-10:10] sin(x),cos(x)

A 𝑠𝑖𝑛(𝑥) and 𝑐𝑜𝑠(𝑥) plot will appear for −10 <= 𝑥 <= 10. For more information and demos of the
features of gnuplot, visit the official gnuplot documentation page.

9.5 Circuit Simulation with NGSpice

NGSpice is ageneral‑purpose, open‑sourcecircuit simulationprogramwhich isdescended fromSPICE,
aprogramthatbegandevelopment in 1973at theUniversity of California atBerkeley. ThenameSPICE
is short for “SimulationProgramwith IntegratedCircuit Emphasis”. SPICE is an industry‑standard tool
capable of linear AC analysis and non‑linear transient analysis of electronic circuit by solving device
model equations for each of the circuit elements based on Kirkhoff’s current and voltage laws at each
node.

SPICE was designed for integrated circuit simulation, but has also been used to simulate board‑level
circuit design. It has also been used for the simulation of power electronics circuits.

To install NGSpice on the Raspberry Pi, type:

sudo apt install ngspice

9.5.1 Defining a circuit file for simulation

To begin using NGSpice, you must first define a circuit file, a text file that describes a netlist of the
electronic components and the nodes to which they are connected. Traditionally, a circuit file uses
the file suffix .cir and contains various “dot commands” to specify the type of simulation to be per‑
formed.

In general, simple circuit elements like resistors, capacitors, and inductors are defined as using the
following syntax:

Derek C. Schuurman 140

http://www.gnuplot.info/documentation.html
https://link.springer.com/book/9780412751400

Exploring Computer Science with the Raspberry Pi

Element Definition

Resistor R[name] [node 1] [node 2] [resistance value (Ohms)]

Capacitor C[name] [node 1] [node 2] [capacitance value (Farads)]

Inductor L[name] [node 1] [node 2] [inductance value (Henries)]

Note each element must have a unique name and [node 1] and [node 2] represent the node names
or numbers that the element is connected to. For example, a series RC circuit, with corresponding
element values 1kohm and 10𝜇F, could be represented as follows:

R1 1 2 1.0k
C1 2 0 10uF

The special node numbered “0” indicates a ground connection. NGSpice includes many other cir‑
cuit elements as well, including semiconductor models for JFET, MOS, and bipolar transistors and
diodes.

Circuit files can be entered using your favorite text editor. For example, consider the anRC circuit with
nodes labelled 1 and 2 fed by a sinusoidal voltage source in the diagram shown below:

Figure 30: An RC circuit fed by a sinusoidal voltage source

Below is the circuit file corresponding to the schematic diagram shown above. This circuit file defines
values to the circuit elements and initiates a transient analysis capturing the voltage at nodes 1 and
2.

TRANSIENT RESPONSE IN AN AC CIRCUIT WITH RC ELEMENTS
* Sinusiodal Source
VS1 1 0 SIN(0 10V 60Hz 0)

Derek C. Schuurman 141

Exploring Computer Science with the Raspberry Pi

* Circuit elements
R1 1 2 1.0k
C1 2 0 10uF

.control
TRAN 100us 60ms
PRINT V(1) V(2) > output.txt
.endc
.END

Note the format of of the circuit file includes a title on the first line and comments are included by
putting an asterisk at the beginning of the line. This circuit file defines a sinusoidal voltage source
(VS1) connected to two series connected circuit elements (R1 and L1). This circuit file also includes
a few “dot” commands–special commands that begin with a dot and are used to adjust settings and
define the type of analysis to be performed. In particular, the .control and .endc lines surround
theanalysis andoutput tobe captured in the simulation. In this case, a transient analysis is performed
over a time scale of 60𝑚𝑠 with a suggested time step of 100𝜇𝑠. The voltages of nodes 1 and 2 at each
time stepwill be sent to a file namedoutput.txt. All circuit filesmust concludeswith a special dot
command, .END.

9.5.2 Example Circuit Simulation

To simulate this circuit, invoke the simulator as follows:

ngspice -b example.cir

where example.cir is the name of the circuit file to be simulated and -b indicates that the simu‑
lation is to be run in batch mode (rather than in an interactive mode). A summary of the simulation
will be printed and, as indicated above, the voltages at nodes 1 and 2 at various timesteps will be
printed to output.txt. This output file is arranged into rows of timestamps and voltages that can
be imported into a spreadsheet or a plotting package to plot the transient response.

If you are running in a graphical environment, the simulation output can also be directly plotted using
gnuplot (described in a previous section). To add a control command to plot the transient output,
add the following command in place of the PRINT command in the circuit file above:

gnuplot plot.data V(1) V(2)

Run the simulation again as follows:

ngspice -b example.cir

A graphical window should appear like the one below showing a plot of the voltages at nodes 1 and
2.

Derek C. Schuurman 142

Exploring Computer Science with the Raspberry Pi

-10

-5

0

5

10

0 0.01 0.02 0.03 0.04 0.05 0.06

V

s

v(1)
v(2)

transient response in an ac circuit with rc elements

Figure 31: NGSpice voltage transient plot

For more information and to view the official ngspicemanual, consult the ngspice home page.

9.5.3 Power Electronics Circuit Simulation

AlthoughSPICEsimulationwasoriginallydesigned for integratedcircuits, it canalsobeused forpower
electronics simiulations. What follows is a circuit simulation of a phase angle control circuit that can
be used to vary the AC volage across a load.

A circuit is shown in Figure 32wherein the power electronic device is represented by a simple voltage‑
controlled switch. Normally, such a power switch would be implemented using a power device such
as a thyristor or IGBT. VS represents a sinusoidal voltage source, and the switch is fired at a given
phase angle 𝛼, relative to the source voltage. The phase angle adjusts the average AC voltage seen
across the load resistor RLOAD.

The corresponding circuit file is given below. This file defines a variety of circuit parameters which
represent frequency, period, voltage, load resistance and other parameters. One key parameter is
ALPHA, which represents the angle 𝛼 in radians, the phase angle at which the switch is fired. For this
simulation, we will set 𝛼 = 1𝑟𝑎𝑑𝑖𝑎𝑛/𝑠𝑒𝑐.

AC VOLTAGE REGULATOR

Derek C. Schuurman 143

https://ngspice.sourceforge.io/

Exploring Computer Science with the Raspberry Pi

Figure 32: AC chopper circuit

.model switch1 sw vt=0.5 vh=0.2 ron=.001 roff=1MEG

.PARAM FREQ=50, RLOAD=10, PI=3.14159, TWOPI={2*PI}, ALPHA=1

.PARAM DELAY={ALPHA/(TWOPI*FREQ)}, VRMS=2V, VMAX={SQRT(2)*VRMS}

.PARAM PERIOD={1/FREQ}

VS 1 0 SIN(0 {VMAX} {FREQ})
VSW 100 0 PULSE(0 1 {DELAY} 1ns 1ns {PERIOD/2-DELAY} {PERIOD/2})

RLOAD 1 2 {RLOAD}
SW1 2 0 100 0 switch1

RLOAD 1 2 {RLOAD}
SW1 2 0 100 0 switch1

.control
TRAN 5us 40ms
gnuplot plot.data V(1)-V(2) xlabel 'time' ylabel 'load voltage'
.endc
.END

This simulation can be run using the command:

ngspice -b ac-voltage-regulator.cir

The resulting output plots the voltage across the load resistor as shown below:

Note that the average voltage across the load resistor is decreased depending on 𝛼, the angle of the
firing control. Using the circuit parameterALPHA, we can adjust the average AC voltage output across
the load. The output waveform is periodic but is distorted from an ideal sinusoid. NGspice can help
us determine howmuchharmonic distortion is present across the load using the following lines in the
control block:

Derek C. Schuurman 144

Exploring Computer Science with the Raspberry Pi

-3

-2

-1

0

1

2

3

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

v(1)-v(2)
lo
a
d

v
o
lt
a
g
e

time

ac voltage regulator

Figure 33: Phase angle controller transient plot

.control
TRAN 5us 400ms
fourier 50 V(1)-V(2)
gnuplot plot.data fourier11[1] vs fourier11[0] xlabel 'frequency' ylabel '

Load Voltage Magnitude'
.endc

The output from running the simulation reports the total harmonic distortion (THD) as follows:

Fourier analysis for v(1)-v(2):
No. Harmonics: 10, THD: 32.1307 %, Gridsize: 200, Interpolation Degree:

1

The resulting frequency plot of harmonic magnitudes is plotted in Figure 34.

Note this circuit is based on an example the author has co‑athored in another book on the topic titled
PSpice Simulation of Power Electronics Circuits. Further examples of power electronic circuit simula‑
tions using SPICE can be found on the book’s companion website.

Derek C. Schuurman 145

https://link.springer.com/book/9780412751400
https://ece.uwaterloo.ca/~pwr_elec/

Exploring Computer Science with the Raspberry Pi

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500

fourier11[1]

ac voltage regulator

Figure 34: Frequency Harmonics in Load

9.6 Ham Radio Applications for the Raspberry Pi

The Raspberry Pi repositories include a variety of Ham Radio programs, some of which are described
in the following sections. The author uses a Raspberry Pi for his ham radio station computer and has
found it more than capable of running a variety of key radio programs, including the software listed
below.

9.6.1 WSJT

For licensed amateur radio operators, WSJT can be used to exchange packets on various amateur
bands using digital modes such as FT4 and FT8. A version of WSJT for the Raspberry Pi can be down‑
loaded from the WSJT home page.

9.6.2 fldigi and flrig

The fldigi program is a “softwaremodem” for amateur radio use. It can be used to communicate using
digital modes like PSK31, QPSK, MFSK, RTTY, and Olivia. The flrig program can co‑operate with fldigi
to provide software control of your ham radio transciever (your “rig”). A screenshot of fldigi operating
with a PSK31 transmission fromW1AW is shown in Figure 36.

Derek C. Schuurman 146

https://wsjt.sourceforge.io/
https://github.com/w1hkj/fldigi
https://github.com/w1hkj/flrig
https://www.arrl.org/w1aw

Exploring Computer Science with the Raspberry Pi

Figure 35: FT8 Spectrumwaterfall window onWSJT program

Figure 36: fldigi programwindow showing PSK31 transmission from station W1AW

Derek C. Schuurman 147

Exploring Computer Science with the Raspberry Pi

9.6.3 TQSL

Trusted QSL (TQSL) is freely available software used in conjunction with the ARRL’s Logbook of the
World (LoTW). LoTW is aweb‑based database for submitting electronic logs of radio contacts (“QSOs”)
and for confirmations (“QSLs”). The Trusted QSL software allows a ham radio operator to digitally
sign his contacts and submit them to using the ADIF (Amateur Data Interchange Format) to the LoTW.
Digital signing requires a digital call sign certificate obtained from the ARRL.

Derek C. Schuurman 148

https://lotw.arrl.org/lotw-help/
https://lotw.arrl.org/lotw-help/
https://adif.org/100/adif_100.htm
https://www.arrl.org/

Exploring Computer Science with the Raspberry Pi

10 Ethics and Computer Technology

Technology amplifies opportunities to do good as well as to do harm. While various examples dis‑
played in the preceding chapters appear neutral, a variety of issues emerge when digital technology
is applied to real‑world applications. Engineers and computer scientist need to cultivate a posture of
responsibility alongside their technical competencies. For this reason, engineers and compuer scien‑
tists must strive to take more into account than just technical considerations.

10.1 Design norms

A stream of philosophical thought emerged in the mid‑twentieth century developed by Herman
Dooyeweerd and Dirk Vollenhoven at the Free University in Amsterdam. One key insight of this
philosophy was the concept of fifteen “modal aspects” of reality that include various laws and norms.
A set of “design norms” can be derived from the normative “modal aspects” to provide a framework
for designers to take more factors into account. Technology is not neutral, but rather has substantial
cultural, social, lingual, economic, aesthetic, and justice issues. A collection of seven design norms
are listed below along with descriptions and example questions associated with each norm.

1. Cultural Appropriateness

• Description: Technology products should consider the culture into which they are embed‑
ded, cultivating improvement without disrespectful or unnecessary disruption.

• Questions: Does the technology relieve burdens while preserving what is good in a cul‑
tural context? Is thedesignappropriate to its context, includingquestionsof centralization
vs. decentralization, large scale vs. small scale, and continuity vs. discontinuity.

2. Transparency

• Description: Documentationx anduser interface ought tobe clearly understandable by the
userwithout being overwhelming. Users should be informed about potential dangers and
guided to diagnose failures. For example, software and dashboards that clearly communi‑
cate status and errors.

• Questions: Is thedocumentation clear andunambiguous? Is the layout, color scheme, and
icons of the interface helpful? Does the product performas advertised or does it bear false
witness or exaggerate its claims? Are potential dangers clearly indicated to users?

3. Stewardship

• Description: Use of creational resources should be respectful, frugal, and caring, Design
should reflect concern for sustainability and the environment. This norm also includes
economic considerations.

Derek C. Schuurman 149

https://en.wikipedia.org/wiki/Herman_Dooyeweerd
https://en.wikipedia.org/wiki/Herman_Dooyeweerd
https://en.wikipedia.org/wiki/D._H._Th._Vollenhoven

Exploring Computer Science with the Raspberry Pi

• Questions: Does the design consider the entire life cycle of the product? Is it repairable
and recyclable? Is it efficient, using energy and other resources wisely? Are there waste
products result from its use? Is respect paid to all creatures?

4. Aesthetics

• Description: This normdealswithdelightful harmony: the formof the technological device
should suggest its functionandbepleasingandsatisfying touse. For example, ahammer’s
form implies its function (of pounding).

• Questions: Can new users easily intuit the function of this design? Is the user interface
clear and pleasing to use? Is it delightful and beautiful?

5. Justice

• Description: Technology should correct (not cause) injustice and should encourage justice,
i.e., equity and fairness. The design should help give each person their due and facilitate
the opportunity for all creatures to be the creature that God intends them to be.

• Questions: Does this device promote fairness? Are copyrights and intellectual property re‑
spected? Could this design be easily used for unjust purposes? Does it respect intellectual
property and privacy?

6. Caring

• Description: Our tools should help us serve one another, promote wellness, contribute to
healing, show love to our neighbor, and enable fellow creatures to flourish. Design should
show loving concern for the welfare of all involved.

• Questions: In what ways does this design show care for others? How does it show love for
neighbor? Whomight be harmed if this device is used?

7. Trust

• Description: Technological devices ought to be reliable, especially in situations where
safety is a crucial factor. Design should be a response to God and promote faith in him
rather than faith in technology of any created thing.

• Questions: Can the user depend on the design for its intended purpose. Is the design safe
and secure? What habits and practices are associated with the device and howmight that
shape the user?

This paper presents Herman Dooyeweerd’s philosophy as one such framework and provides a formu‑
lation of well‑being informed by his Theory of Aspects and his “simultaneous realization of norms”
principle.

Rather than focusing on one or just a subset of norms, designers should strive for what Dooyeweerd
referred toas the simultaneous realizationof norms. It is crucial that the considerationofdesignnorms

Derek C. Schuurman 150

Exploring Computer Science with the Raspberry Pi

should not be left as an afterthought, but rather it should be part of the design process — right from
the beginning.

10.2 A Brief Normative Analysis of the Raspberry Pi

I think theRaspberry Pi project illustrates someaspects of these design norms. For instance, the Rasp‑
berry Pi facilitates cultural appropriateness by using open source software that enables developers
from different regions to customize software for their particular context. The official power supplies
also accommodate a wide range of voltages with adapters for different international power sockets.
The Raspberry Pi OS can be configured to support a wide range of languages and regions and pro‑
vides an appropriate platform for teaching computing in themajority world. The cultural norm is also
refected in newmodels maintaining backwards compatibility with a consistent form factor and price
point over many generations of the Raspberry Pi. The Raspberry Pi also exhibits transparency in
terms of using open source software (however, some of the hardware, including the GPU, have not
been as well‑documented). The Raspberry Pi reflects stewardship by being compliant with RoHS
(Restriction of Hazardous Substances) directives. Furthermore, the Raspberry Pi contributes to green
computing by providing a plafform with very low power requirements. The Raspberry Pi reflects the
aesthetic norm through beautiful board layouts and in the design of attractive cases and packag‑
ing. The Raspberry Pi has aspects that reflect the justice norm by providing a low‑cost platform that
helps reduce the “digital divide.” Some electronics manufacturers further address the problematic
issue of “conflict minerals” through efforts like the Responsible Minerals Initiative. The caring norm
is reflected in the Raspberry Pi Foundation by fostering a community with free resources to help peo‑
ple understand computing better. Finally, the trust norm is reflected in providing a reliable computer
(although some varieties of SD cards can be unreliable).

To learn more about design norms in computer science, see chapter 4 of Shaping a Digital World and
for engineering, see chapters 4 and 5 of A Christian Field Guide to Technology for Engineers and Design‑
ers.

Discussion Question

Select a technological artifact that you use regularly in your life and perform a “design norm
audit” by thinking through each of the norms with respect to the device. How could the device
bemademore “normative”? Can you think of ways the Raspberry Pi could further address some
of these design norms?

Derek C. Schuurman 151

https://www.asa3.org/ASA/PSCF/2015/PSCF3-15Schuurman.pdf
https://www.rohsguide.com/
https://www.responsiblemineralsinitiative.org/
https://www.raspberrypi.org/about/
https://www.ivpress.com/shaping-a-digital-world
https://www.ivpress.com/a-christian-field-guide-to-technology-for-engineers-and-designers
https://www.ivpress.com/a-christian-field-guide-to-technology-for-engineers-and-designers

Exploring Computer Science with the Raspberry Pi

11 A Collection of Lab Exercises

The following are a collection of miscellaneous labs and hands‑on activities that can be performed
with the Raspberry Pi.

Some Lab Safety Guidelines

Some of the following labs involve wiring from the Raspberry Pi board to a breadbaord. It is impor‑
tant to realize that caution should be exercisedwhenworking with electronic components. Improper
handling or wiring can damage your circuit board and components.

Improper circuit wiring can also cause injuries. For example, an improperly wired integrated circuit
or an electrolytic capacitor or tantalum capacitor with its polarity reversed can explode. In these labs,
we will not be using any electrolytic or tantalum capacitors, but caution should always be exercised
when wiring circuits. Out of an abundance of caution, when you first power up a circuit, do not posi‑
tion your eyes near the circuit. If you smell smoke, power down the circuit immediately. Some parts,
especially resistors and integrated circuits, can get thermally hot. Assume parts to be hot unless you
know otherwise. In a defective circuit, parts that are normally cool enough to touch may burn you.
You should always remove power from your circuit before handling it.

It is recommended that when selecting electronic circuit boards and components you use parts that
are RoHS (Restriction of Hazardous Substances Directive) compliant.

Keep your work area neat and organized. Messy work areas are more conducive to accidents.

Here are some general guidelines to ensure you do not damage your Raspberry Pi or other electronic
components:

• Do not remove the power from the pi until after you first perform a software shutdown of the
Linux operating system. Removing the power before performing a proper shutdown could cor‑
rupt your SD card.

• Do not run your Raspberry Pi circuit board outside the case on a metal surface! The metal can
short out your board and destroy it. It’s best to run your Raspberry Pi in its case.

• Do not drop metal wire parts or wire clippings onto your Rasbperry Pi. These could short out
the circuit board causing damage.

• The GPIO pins on the Raspberry Pi use 3.3V logic. Do not connect them to a circuit powered at
higher voltages (like a 5V logic circuit) which can destroy the board.

• Carefully check theGPIO pin numbers before connecting them. There are 40 pins on the header,
and it is easy to makemistakes. Double check your wiring before powering up your circuit!

Derek C. Schuurman 152

https://www.rohsguide.com/

Exploring Computer Science with the Raspberry Pi

• Do not perform any wiring while the Raspberry Pi is powered on!
• Don’t use any other power supply except the one suppliedwith the kit. Regular phone chargers
may not have enough current to meet peak power demands.

• Ensure your SD card has good reliability ratings and consider a class A2 speed rating or better.
• Be aware that ESD (Electrostatic Discharge) can damage electronic components. Ideally, one
should typically use an antistatic mat or wrist strap when handling circuit boards and compo‑
nents.

This list of guidelines, possible accidents, and procedures could not possibly be com‑
prehensive. Use your good judgment!

Lab #1: Getting Started with the Raspberry Pi

The goals of this lab include:

• Setup and configuration of your Raspberry Pi
• Configuring wired and wireless networking
• Connecting and editing a file using secure shell (SSH)

Introduction

Once you obtain your Raspberry Pi kit from the lab instructor, carefully unpack the following:

• case
• Raspberry Pi board
• microSD card
• power supply

Set themicroSD card to one side and carefully place the Raspberry Pi in its case following the instruc‑
tions from the “Hardware Setup” in the “Quick Start” guide. Be gentle, insert the side with the HDMI
connector first and then press down on the other side. The board should sit snugly in the case.

Do not insert the SD card until after the board is properly mounted inside the case to prevent
damage!

Leave the lid off the case since we will be accessing some of header pins in later labs. Once the Rasp‑
berry Pi is properly seated in its case, youmay insert the microSD card.

Derek C. Schuurman 153

Exploring Computer Science with the Raspberry Pi

The Raspberry Pi 4 has 2micro HDMImini ports, so your kit include amicro HDMI adapter HDMI cable.
Use the adapter cable to connect the HDMI port nearest the USB C power input to one of the labmon‑
itors (leave the other monitor connected to the workstation). Plug in a keyboard and a mouse and
insert the power adapter. Next, apply power, butmake sure themonitor is connected before applying
power so that the Raspberry Pi can detect the presence of the monitor during power up.

If you left the lid off the case, you should observe a red LED illuminated on the Raspberry Pi board
indicating power. A flashing green LED indicates activity on the SD card.

The first time the Raspberry Pi is powered on, it will boot into a setup and installation script. Follow
any instructions on the screen to setup the Raspberry Pi OS and follow any prompts to setup country,
language, time zone, and keyboard. Select a username and password as prompted (and don’t forget
your new password!). Likewise, if you reach the “Update Software” step, be sure to click “Skip” (this
can take a very long time and will be done later).

The installation should take only a fewminutes. Once the OS is installed, the Raspberry Pi should be
restarted and it should boot directly into a graphical desktop environment.

Note: Using default or weak passwords on IoT devices are a source of many security issues and
exploits! Don’t proceed to enable networking below without first establishing a secure pass‑
word!

Setupwireless networking on the Raspberry Pi using Eduroam

You should notice a network connection icon in the task bar at the top right corner of your desktop.
Click the icon and a list of available Wi‑Fi connections should appear. Click on the network and enter
the settings as prompted. After a fewmoments, the Wi‑Fi network should become active.

Note that the networkmanager programhas a command line configuration tool that can also be used
by typing:

nmtui

Security Note: WiFi passwords are stored in special configuration files on your computer. While
file permissions prevent casual viewing of these files, they can be read by those with root privi‑
leges or if your SD card is mounted on another computer.

Perform software updates

Now that your device is connected to a network, it is even more crucial to keep your device updated
with the latest security patches. To performupdates from the command line, open a terminalwindow
and type the following commands:

sudo apt update

Derek C. Schuurman 154

Exploring Computer Science with the Raspberry Pi

sudo apt upgrade
sudo apt autoremove

These updates may take several minutes. When the updates are complete, we can configure auto‑
matic updates by installing the unattended-upgrades package as follows:

sudo apt install unattended-upgrades

Next, edit the configuration to enable unattended upgrades as follows:

sudo nano /etc/apt/apt.conf.d/50unattended-upgrades

This commandwill open a configuration file to fine‑tune the unattendedupdates. Remove the double
slashes (//) in front of the following line in the configuration file so to enable automatic updates:

"origin=Debian,codename=\${distro_codename}-updates\";

Finally, ensure automatic updates are enabled by running:

sudo dpkg-reconfigure unattended-upgrades

At this point, automatic updates should be enabled.

Complete setup and configuration

Next configure more settings by typing the following at the command line:

sudo raspi-config

A text window should appear. Using the raspi-config program, perform the following configu‑
rations. Note that since this is a text application you will need to use the keyboard to navigate the
menus (using the arrow and tab keys).

• select Interface Options→ SSH (enable SSH server)

Next, set your locale and give your Raspberry Pi a unique hostname (something other than the default
hostname of raspberrypi). To do this, select System Options→Hostname (enter a new hostname of
your choosing).

Note: A hostnamemay contain only letters, digits, and the hyphen.

Most embeddedsystems run “headless,” i.e.withno screen, keyboard, ormouse. In this coursewewill
normally run our Raspberry Pi in a headless state so it makes sense to disable the graphical desktop
environment and use a console interface instead. Doing this frees extra memory and CPU resources
that a graphical desktop requires. (However, if you ever want to start the graphical desktop environ‑
ment while using the console, just enter startx). Moreover, we want to disable auto‑login for the

Derek C. Schuurman 155

Exploring Computer Science with the Raspberry Pi

Raspberry Pi (youwant to protect your Raspberry Pi fromunauthorized access by thosewith physical
access to the device). To run the Raspberry Pi with a console that requires a login on startup, do this
in raspi-config:

• select System Options→Boot/Auto Login
• select Console ‑ Text console, requiring user to login

Once all these settings have been made, exit raspi-config and select the option to reboot. Alter‑
natively, you can initiate a reboot on the command line by typing:

sudo reboot

TheRaspberry Piwill now reboot into a console login screen. Continueby logging into your Raspberry
Pi using the username and password that you set earlier. After logging in successfully, you will be
presented with a terminal interface.

To learnmore about using terminal commands in Linux, refer to the Exploring Computer Sciencewith
the Raspberry Pi.

Remotely Connecting to your Raspberry Pi

Once your Raspberry Pi has rebooted and you have logged in, type the following command to check
the status of your network connections:

ifconfig

The output of this commandwill show the displays the status of the currently active interfaces: eth0
represent the Ethernet port, wlan0 represents the Wi‑Fi interface, and lo represents the local loop‑
back interface. Looking next to the wlan0 interface you should see something like the following:

wlan0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.1.2.15 netmask 255.255.255.0 broadcast 10.0.0.255
ether b8:27:eb:c2:7d:da txqueuelen 1000
:

The decimal dotted number beside the inet label is your IP address. Make a note of the IP address
(in the example above, the IP address is 10.1.2.15). The number beside the ether label is your
hardware address (or MAC address) that is unique to your Raspberry Pi’s interface. Note that if you
have an Ethernet cable attached, you should see a separate IP address (andMAC address) assigned to
it.

Note: The Wi‑Fi IP address may change each time you boot based on how the DHCP leases are
set.

Log into a Linux desktopworkstation using your Calvin usernameandpassword. Connect to the Rasp‑
berry Pi using a “secure shell” (ssh) connection over the network. In a terminal window, type:

Derek C. Schuurman 156

https://sites.calvin.edu/derek/docs/cs-with-rpi.pdf
https://sites.calvin.edu/derek/docs/cs-with-rpi.pdf

Exploring Computer Science with the Raspberry Pi

ssh user@10.1.2.3

where user is your username and 10.1.2.3 is the Wi‑Fi IP address of your Raspberry Pi as deter‑
mined earlier. Note that running SSH from the command line should also work in OSX.

If you are using a recent version of Windows, please follow the tutorial for using the OpenSSH client.
ForWindows, you could also use Putty (a commonopen source SSHclient) or theWindows subsystem
for Linux (WSL).WSL includes support for abasic shell (includingsshandmanyother commands) and
can be launched by typing WSL or bash in the start menu.

If everything is working, you should be able to log in successfully using your username and password
you selected during installation. When your Ethernet cable is connected and has an IP address as‑
signed youmay also use that address to connect to the Raspberry Pi.

What’s my IP Address?

Using ssh to connect to a Raspberry Pi has a few limitations. First, you can normally only access a
Raspberry Pi on the same local network (if it is remote, you will need a “pinhole” opened on any fire‑
walls to allow traffic to port 22which presents possible security issues). Second, even if the Raspberry
Pi is on the same local network, you still need to know its Wi‑Fi or Ethernet IP address. In some situ‑
ations, a static IP address can be configured to ensure the IP address remains fixed over time, but IP
addresses are often “leased” from a DHCP server and can change over time. One could temporarily
connect a monitor and keyboard to the Raspberry Pi to log in and determine the IP address, but that
is cumbersome and impractical.

RaspberryPi Connect is a service that provides away to connect to your Raspberry Pi fromanywhere
in the world with no knowledge of its IP address. There is a “Lite” version that only supports remote
shell access, and to install the Raspberry Pi Connect Lite software on the Raspberry Pi, type:

sudo apt install rpi-connect-lite

Next, use the rpi-connect command to start Connect for your current user as follows:

rpi-connect on

Similarly, when you want to stop Connect, run:

rpi-connect off

It is also recommended to enable “user‑lingering,” which allows you to log in remotely evenwhen you
are not logged in locally. Type:

loginctl enable-linger

Derek C. Schuurman 157

https://learn.microsoft.com/en-us/windows/terminal/tutorials/ssh#access-windows-ssh-client-and-ssh-server
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install

Exploring Computer Science with the Raspberry Pi

Once Connect is running, use the following command to generate a link that will allow you to use the
device:

rpi-connect signin

Point a browser to the link provided. If you don’t already have a Raspberry Pi ID account, you will
need to create one. Raspberry Pi ID also provides options for two‑factor authentication (2FA) which
youmay enable for enhanced security.

Once you have a Raspberry Pi ID, you can follow the link and log in to your Raspberry Pi ID account.
You should see a link to your Raspberry Pi device. Choose a unique name to identify your Raspberry Pi
and click “Createdevice.” You should receive anemail notification that anewdevice is available. Once
the Raspberry Py is setup, you will be able connect to a shell remotely from anywhere by pointing a
browser to connect.raspberrypi.com and clicking on theConnect button next to the device name.

If you are having problems connecting, try using a different browser, such as Google Chrome.

To learn more, visit Raspberry Pi Connect.

Warning If you receive an email reporting a strange sign‑in on Connect, immediately change
your Raspberry Pi ID password and remove the device from your account. Consider enabling
two‑factor authentication for greater security.

Editing Python Programs over SSH

Next, practice editing and running a Python program over ssh. Use ssh to connect to the Raspberry
Pi and then enter the following command to create a new folder:

mkdir lab1

Next, changedirectories into the folder you createdandedit a newPythonprogramcalledhello.py
by typing:

cd lab1
nano hello.py

Enter the following code into the source file

Lab 1
name = input('What is your name? ')
print(f'Hi {name}, welcome to Lab 1!')
print('Good Bye')

Next, run this program by typing:

python3 hello.py

Derek C. Schuurman 158

https://www.raspberrypi.com/documentation/services/id.html#create-a-raspberry-pi-id
https://connect.raspberrypi.com
https://www.raspberrypi.com/documentation/services/connect.html

Exploring Computer Science with the Raspberry Pi

The program should run as expected. Note that nano is a simple, minimalist (and somewhat cumber‑
some) editor. Other nifty editors are available for the command line environment, like emacs and vim,
which are simple but powerful alternatives tonano. If you are so inclined, youmaywant to learn one
of these editors. In a future lab we will learn how to remotely edit programs on the Raspberry Pi over
SSH using vscode.

Next, shutdown the Raspberry Pi by typing the following command:

sudo halt

Remove the power cable only when shutdown completes.

Note: Note that a green LED on the Raspberry Pi indicates when the SD card is being accessed,
so do not remove power until the green LED stops flashing. Once Linux has completely shut down
and the green LED has stopped flashing, you may unplug the power supply. Always perform a
sudo halt before removing power from your Raspberry Pi.

Since we normally plan to run your Raspberry Pi in a headless configuration (without a monitor or
keyboard), youwill need to connect to yourRaspberryPi using eithersshor theRaspberryPi Connect
service.

Questions

Total 10 marks (1 mark):

1. What do the red and green LEDs on the Raspberry Pi board indicate? (1 point)

2. For your Raspberry Pi: (1 point)

• Record your WiFi (wlan0) IP address
• Record your WiFiMAC address

3. Briefly explain the difference between an IP address and a MAC address. (1 point)

4. Whymight your Wi‑Fi IP address change when you reboot your Raspberry Pi? (1 point

5. Record and explain the following measurements from your system: (1 point)

• Total memory (using free -h command)
• Initial swapmemory size
• Final swapmemory size after disabling swap

6. To display a list of mounted disk partitions and their sizes, type the following command:

df -h

Howmuch storage space is free on the root partition (the/ partition) on your SD card? (1 point)

Derek C. Schuurman 159

https://www.nano-editor.org/
https://www.gnu.org/software/emacs/
https://www.vim.org/

Exploring Computer Science with the Raspberry Pi

7. Take a screenshot of the Raspberry Pi Connect webpage showing the overview of your config‑
ured Raspberry Pi with theUUID and serial number showing.

8. What is the kernel version running on your Raspberry Pi? (1 point)

Hint: use the command to display operating system information included the Shell commands
section in chapter 1.

9. What is the proper procedure for shutting down the Raspberry Pi? Why is it important to wait
for the green LED to stop flashing before removing power? (1 point)

Lab #2: Editing and Running Programs on the Raspberry Pi

The goals of this lab are to learn:

• Editing and running programs remotely in a terminal window
• Editing and running programs remotely with vscode
• Comparing C and Python

Connecting over Wi‑Fi

Your Wi‑Fi adapter was setup in Lab 1 so we can now run the Raspberry Pi in a headless configuration
(with no screen or keyboard) and connect over the network. Power up your Pi and determine your IP
address using one of the following twomethods:

1. Connect amonitor and keyboard and power up the Pi, login and type ifconfig to list your IP
address.

2. Connect to a shell using Raspberry Pi Connect and type ifconfig to determine your Wi‑Fi IP
address

Recall that each time you connect to Wi‑Fi (or Ethernet) your Raspberry Pi may get assigned a
different IP address!

Once you have determined the IP address of your Raspberry Pi, you can connect usingssh. Note that
ssh is typically included with Linux and OSX. For Windows, you could use Putty (a common open
source SSH client) or the Windows subsystem for Linux (WSL). WSL includes support for a basic shell
(including ssh and many other commands) and can be launched by typing WSL or bash in the start
menu. Once your desktop or laptop has access to ssh, open a terminal window and type:

ssh user@1.2.3.4

Derek C. Schuurman 160

https://code.visualstudio.com/
https://www.raspberrypi.com/software/connect/
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://learn.microsoft.com/en-us/windows/wsl/install

Exploring Computer Science with the Raspberry Pi

where user is the username you selected in the first lab and 1.2.3.4 is the Wi‑Fi IP address you
determined for your Raspberry Pi. If everything is working, you should be able to log in successfully
after you are prompted for a password.

You can also use a tool related to ssh called secure copy (scp) to transfer files between your com‑
puter and the Raspberry Pi. To usescp, first create a test file namedtestfile.txt on your laptop
or desktop and then use the following command to to transfer it from your desktop or laptop to your
Raspberry Pi:

scp testfile.txt user@10.1.2.3:

This will transfer a local file named testfile.txt from your desktop or laptop to the home folder
of user on the Raspberry Pi at IP address 1.2.3.4. Note that you will be prompted for a password
aswell. Use thels commandon the Raspberry Pi to confirm that the filewas successfully transferred.
To learn more about scp, consult the man pages as follows:

man scp

Next, create a new folder for this lab as follows:

mkdir lab2

This creates a new folder (directory) namedlab2. Note that Linux is case sensitive! Typels to list all
the files and folders in your home directory and you should see the new folder there. Change directo‑
ries to the new folder by typing:

cd lab2

Running an Assembly Language Program on the Raspberry Pi

The Raspberry Pi uses an ARM processor, one that has its own Instruction Set Architecture (ISA). The
ISA is a model that defines the set of instructions, registers, and operations that a processor can per‑
form. TheARMprocessorhas twodifferent InstructionSetArchitectures: a 32‑bit architecture referred
to as ARM32, and a 64‑bit architecture referred to as ARM64. The 64‑bit ISA is sometimes referred to as
AArch64, and the 32‑bit ISA is sometimes referred to as AArch32. Hence the Raspberry Pi OS has two
different versions, a 32‑bit version and a 64‑bit version. All recent versions of the Raspberry Pi (since
2016) support the ARM64 architecture, but are backwards compatible with ARM32, allowing you to to
execute 32‑bit applications on ARM64 processors. To determine which version of the Raspberry Pi OS
you are running, simply type:

uname -m

aarch32 indicates a 32‑bit OS and aarch64 indicates a 64‑bit OS.

In this section you will enter an ARM assembly program and run it. Assembly language is amachine‑

Derek C. Schuurman 161

https://www.arm.com/products/silicon-ip-cpu
https://developer.arm.com/Architectures/A32%20Instruction%20Set%20Architecture
https://developer.arm.com/Architectures/A64%20Instruction%20Set%20Architecture

Exploring Computer Science with the Raspberry Pi

specific programming language that depends on the Instruction Set Architecture and has a one‑to‑
one correspondence between its statements and the computer’s nativemachine language. Programs
written in Assembly Language are translated into the nativeMachine Language using an Assembler.

To begin editing an assembly language program, type the following:

nano program1.s

As introduced in the last lab, nano is a general‑purpose text editor that you can use to edit the source
code of a program or other text files in a shell.

Of course, the assembly code you enter will vary depending on whether you are running a 64‑bit or
32‑bit OS. Assuming a 64‑bit OS, enter the assembly language program as follows:

// ARM64 Assembler program to print a greeting
// CS326 Embedded System and IoT

.data
message: .ascii "Hello World!\nAssembled for a 64-bit Raspberry Pi.\n"

.text

.global _start
_start:
// Linux system call to print message

mov w0, #1 // File descriptor 1 (stdout)
ldr x1, =message // Load address of message
mov w2, #57 // Message length
mov w8, #64 // system call for write operation
svc #0 // perform system call

// Linux system call to terminate program
mov w0, #0 // Return code 0 (success)
mov w8, #93 // exit system call
svc #0 // terminate program

Next, assemble, link, and run the program by typing the following sequence of commands:

as -o program1.o program1.s
ld -o program1 program1.o
./program1

The dot‑slash in front of the programname tells the shell to execute the program in the current folder.
If everything was entered correctly, your program should assemble and run and amessage should be
displayed.

Question 1: What does the first systemcall do in the assembly program? What does the file descriptor
represent?

Next, type the following command to view your resulting object file:

Derek C. Schuurman 162

Exploring Computer Science with the Raspberry Pi

objdump -S program1.o

The second part of the output will display a disassembly of the program, showing the machine code
(in hexadecimal) alongside the corresponding assembly instructions.

Question 2: What is the machine code corresponding to the ARM instruction: mov w0, #0x1

To learn more about ARM assembly, see: https://diveintosystems.org/book/C9‑ARM64/index.html

Editing and compiling a C program locally on the Raspberry Pi

Next, wewill create a new programusing the C programming language. Connect to your Raspberry Pi
using ssh and launch an editor program by typing:

nano program1.c

Good coding style requires that C programs start with some header comments that provide informa‑
tion about the program. Type the source code below:

/* My first Raspberry Pi C program
Name: your name
*/
#include <stdio.h>

int main(void)
{

printf("Hello world.\n");
printf("Compiled and run on a Raspberry Pi.\n");
return 0;

}

When you have finished editing, save your file and exit by hitting ctrl-x. To compile your program
in the terminal window, type the following compile command:

gcc -Wall program1.c -o program1

Note that the-Wall command line option tells the compiler to show all warnings, and the-o option
specifies the filename for the compiled output.

Once the compile command has been entered, press return. If the compiler detects any errors or
warnings, they will be reported. If there are any errors or warnings, you will need to return to the
editor to make any corrections as necessary.

Once your editing and compiling are complete and no warnings or errors are generated, you can run
your program in a terminal window. Type the command ls to show a listing of the files, which should
now include a compiled program named program1. Run the program by typing:

./program1

Derek C. Schuurman 163

https://diveintosystems.org/book/C9-ARM64/index.html

Exploring Computer Science with the Raspberry Pi

Recompile the programwithout the -o program option. Use the ls command to view the files in the
directory now.

Question 3: What is the default name given to the output program if the -o option is not specified?
i.e. if the program is compiled as follows:

gcc -Wall program1.c

Remote editing using VScode over SSH

Using text editors like nano on the Raspberry Pi can be cumbersome and cross‑compiling can be
complicated. Another option is tousea remotegraphical editor to edit source files on theRaspberryPi
from a desktop or laptop computer. One program for doing this is Visual Studio Code, often referred
to simply as vscode.

Using a Remote SSH connection with VScode

Ifvscode is not already installed, visit code.visualstudio.com/download and download the appropri‑
ate installer for Windows, OSX, or Linux. Once vscode is installed, perform the following steps:

• launch vscode on your desktop or laptop
• type ctrl-shift-x (or cmd-shift-X on OSX) to bring up the vscode extensions on the
left

• type Remote SSH in the search box
• select and click “install” for the Remote SSH extension (fromMicrosoft)

After the installation is complete, you should see a new blue “connect” icon appear in the bottom left
corner of vscode. Click on the connect icon and select “Connect current window to host” (there’s
also a “Connect to host” option that will create a new window).

Enter the ssh connection details using the format user@1.2.3.4 where 1.2.3.4 is the WiFi (or
Ethernet) IP address of your Raspberry Pi and user is your Raspberry Pi username. Next, you will be
prompted to enter your Raspberry Pi password and then youwill need to wait briefly as vscode sets
up and initializes.

Once the setup and initialization are complete, click on the left link to “open folder” (or select
File→Open Folder) and your home folder on the remote Raspberry Pi should appear! Select the lab2
folder you created earlier in this lab and it will become your working folder. A list of files should
appear on the left where you can select and open the program1.c file. Edit the file andmake some
changes to add another print statement, and then save.

Thevscode editor provides a quick and convenientway to open a shell on theRaspberry Pi by typing
crtl-shift-`which opens a new remote terminalwindowat the bottomof the screen (connected
via ssh to the Raspberry Pi). In the terminal window type the following to compile and run the pro‑
gram you just edited:

Derek C. Schuurman 164

https://code.visualstudio.com/download

Exploring Computer Science with the Raspberry Pi

gcc -Wall program1.c -o program1
./program1

Note howmuchmore delightful it is to use a graphical editor over SSH rather than editing code locally
with the nano editor! VScode is the editor I would recommend using throughout this course.

Using SSHFS extension with VScode

Another vscode extension, SSHFS, allows mounting remote folders using SSH as if they were local
workspace folders. Try installing the SSHFS extension and editing files your Raspberry Pi.

Remote editing on the Raspberry Pi using vscode can also be accomplished using a code tun‑
nel. A code tunnel is a secure connection that allows developers to work with code on remote
machines. To learnmore, seedevelopingwith remote tunnels. Yet another tool for remotedevel‑
opment of embedded systems is PlatformIO, a platform for remote development in embedded
systems.

Comparing C and Python

Which programming language is more efficient: C or Python? In this next section we will run a pro‑
gram to solve the same computational problem using C and Python and compare the run times. We
will write programs in both languages to numerically solve the integral∫4

1
√𝑥 𝑑𝑥 and then record the

execution time required.

First, use vscode to remotely edit the following Python program as compute.py on the Raspberry
Pi to perform the numerical integration:

import math

NUM_STEPS = 1000000 # number of integration steps
a = 1 # lower limit of integration
b = 4 # upper limit of integration
DELTA_X = (b-a)/NUM_STEPS
sum = 0.0
x = a
for step in range(NUM_STEPS):

y = math.sqrt(x)
sum += y
x += DELTA_X

integral = sum * DELTA_X
print(f'restult = {integral}')

Next, execute the program as follows:

time python3 compute.py

Derek C. Schuurman 165

https://code.visualstudio.com/docs/remote/tunnels
https://platformio.org/

Exploring Computer Science with the Raspberry Pi

Record the execution time reported. Repeat this ten times and determine the average execution
time.

Next, use vscode to remotely edit the following C program as compute.c on the Raspberry Pi to
compute the same integral.

#include <math.h>
#include <stdio.h>
#define NUM_STEPS 1000000 // number of integration steps
#define a 1 // lower limit of integration
#define b 4 // upper limit of integration
#define DELTA_X (double)(b-a)/NUM_STEPS

int main()
{

double sum = 0.0;
double y, integral;
double x = a;

for (int step = 0; step<NUM_STEPS; step++) {
y = sqrt(x);
sum += y;
x += DELTA_X;

}
integral = sum * DELTA_X;
printf("%f\n", integral);

}

Compile the code as follows:

gcc compute.c -lm -o compute

Run the compiled program and record the execution time as follows:

time ./compute

Record the execution time. Repeat this ten times and determine the average execution time.

Question 4: What are the average execution times using Python and C? Which language is faster and
why?

As a last step, recompile the C program and add the -Ofast flag as follows:

gcc -Ofast compute.c -lm -o compute

Run the compiled program ten times and determine the average execution time.

Question 5: What does the -Ofast flag do and what was the result? To learn more, visit the gcc
online documentation.

Derek C. Schuurman 166

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Exploring Computer Science with the Raspberry Pi

Lab #3: Using the GPIO Port

The goals of this lab are to learn about GPIO interfacing and programming. This lab requires:

• a breadboard
• a red LED (HLMP‑4700 or similar)
• a 120 ohm resistor
• a tactile push‑button switch
• an assortment of male‑to‑female jumper wires

The breadboard should look something like the image below. The breadboard allows you to con‑
veniently connect components and wires by plugging them into the holes of the breadboard. The
internal wiring of the breadboard connects lines of holes together such that that the inner holes are
connected in vertical lines on either side of the “gutter” and the outside holes are connecting in lines
that run horizontally as a “bus.” The outside horizontal lines are typically used to carry power and
ground while the inner holes are used to connect integrated circuits, components, and wires. The
holes are electrically connected as illustrated with the blue lines below.

Figure 37: Breadboard with blues lines showing internal wiring.

Wiring an LED

The next part this lab requires is an LED. For our first circuit, we will wire an LED to the GPIO port on
thebreadboard. LEDsare “current‑driven”deviceswhere thecurrent required toachievea reasonable
brightness is specified in the datasheet. Exceeding the maximum LED current can result in damage
or thermal failure of the LED. The output of the GPIO port is a set voltage, so a “current‑limiting” re‑
sistor is normally put in series with the LED to set the current appropriately. Note that the LED is a
polarized device; the longer lead is the positive lead (anode), and the shorter lead is the negative lead
(cathode).

Derek C. Schuurman 167

https://www.farnell.com/datasheets/1918234.pdf

Exploring Computer Science with the Raspberry Pi

Figure 38: LED with current‑limiting resistor connected to Raspberry Pi GPIO pin.

The diagram above indicates the schematic symbols for an LED and a series resistor. Selecting a suit‑
able resistance, 𝑅, will depend on the forward current required to light up the LED, as well as the
the forward voltage of the LED. The required resistance, 𝑅, to achieve the appropriate LED current is
determined by solving the following equation (based on Ohm’s Law):

𝑅 = 𝑉𝐺𝑃𝐼𝑂 − 𝑉𝑓𝑜𝑟𝑤𝑎𝑟𝑑
𝐼𝑓𝑜𝑟𝑤𝑎𝑟𝑑

where:
𝑅 = the value of series resistor required
𝑉𝐺𝑃𝐼𝑂 = the voltage of the GPIO port when turned on (approximately 3.3V)
𝑉𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = the “forward voltage” of the LED when it is on (from the datasheet)
𝐼𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = the forward current required to illuminate the LED (from the datasheet)

By consulting the datasheet for the LED, we can determine the LED forward voltage, 𝑉𝑓𝑜𝑟𝑤𝑎𝑟𝑑, and
the illumination current, 𝐼𝑓𝑜𝑟𝑤𝑎𝑟𝑑. Assuming a 𝑉𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = 2.1𝑉 and 𝐼𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = 10𝑚𝐴, we get a
resistance of roughly 120𝑜ℎ𝑚𝑠. A suitable wiring diagram connecting the LED to the Raspberry Pi
GPIO port pin is shown below (note the resistor color codes displayed in the diagram are different
than the value youwill use). Use a resistor Color Code Calculator to find out how to identify a 120𝑜ℎ𝑚
resistor.

Warning: Remember to perform all your wiring with the power OFF! Have a lab instruc‑
tor check your wiring before applying power. Also, when checking your wiring, make
sure that the exposed leads on the resistors and the LED do not touch each other as this
could cause short circuits.

Putting the circuit together we get the circuit illustrated above. Use male‑female jumper wires to

Derek C. Schuurman 168

https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-resistor-color-code

Exploring Computer Science with the Raspberry Pi

1 5 10 15 20 25 30

1 5 10 15 20 25 30

A

B

C

D

E

F

G

H

I

J

Figure 39: BCM 16 connected via resistor to an LED

connect the GPIO header pins on the Raspberry Pi to your breadboard. Pick the red LED from your
kit and wire the long lead of the LED to a 120𝑜ℎ𝑚 resistor which connects to BCM 16 on the Pi. (Note
this is not pin number 16 of the connector, but rather BCM 16). Use a wire to connect the ground
(physical pin #34) to the shorter lead of the LED.

Note: the holes on a newbreadboardmay initially be quite tightmaking it difficult to insert com‑
ponents with flimsy leads, like LEDs and resistors. Pushing components into tight breadboard
holes may result in bending the leads. One thing that may help is to first insert the header pin
from one end of a jumper wire into the tight holes to “loosen” them up before attempting to
insert other components.

Note: Depending on the context, there are different pin numbering conventions used with the
Raspberry Pi. We will be using the BCM numbering convention for these labs. Note that BCM
numbers do not correspond the pin numbers on the physical connector. The BCM pin numbers
can be viewed by typing pinout in a shell or by visiting https://pinout.xyz/.

Power up and turn on the LED

Now power up the Raspberry Pi. Open a terminal window on your desktop PC and connect to the pi
using ssh or Raspberry Pi Connect. (Refer to lab 1 if you need recall how to connect to the Raspberry
Pi).

Derek C. Schuurman 169

https://pinout.xyz/pinout/pin36_gpio16
https://pinout.xyz/pinout/pin36_gpio16
https://pinout.xyz/pinout/ground
https://pinout.xyz/pinout/pin36_gpio16

Exploring Computer Science with the Raspberry Pi

Begin testing your GPIO connection using the raspi-gpio command line utility (which should be
installed by default). To show the state of all the GPIO pins, type:

raspi-gpio get

This should display the state of all the GPIO pins. Note that there are several different pin numbering
schemes that can be usedwith the Raspberry PI, which can lead to some confusion. Note that wewill
be using the BCM numbering scheme. BCM represents the Broadcom SOC channel and reflects the
numbering scheme used by the Broadcom ARM processor and the raspi-gpio utility.

We now need to set BCM 16 as an output as follows:

raspi-gpio set 16 op

Nowwe can turn on the LED by issuing the command to set BCM 16 high:

raspi-gpio set 16 dh

To turn off the LED, issue the command to set BCM 16 low:

raspi-gpio set 16 dl

To learn more about the raspi‑gpio utility, type:

raspi-gpio help

and the various tool options will be displayed.

Write a C program to flash an LED

Create a new lab folder named lab3 on your Raspberry Pi. Next, use vscode to connect to your pi
and enter the following C program and save it to a file named blink.c (refer back to the previous
lab if you need a refresher on how to edit usingvscode). This codemakes use of the pigpio library:

#include <stdio.h>
#include <pigpio.h>
#include <unistd.h>

#define LED 16
#define DELAY 1

int main (int argc, char *argv[])
{

if (gpioInitialise() < 0)
return 1;

gpioSetMode(LED, PI_OUTPUT);

while (1)
{

Derek C. Schuurman 170

https://github.com/joan2937/pigpio

Exploring Computer Science with the Raspberry Pi

gpioWrite(LED, PI_ON);
printf("LED ON\n");
sleep(DELAY);
gpioWrite(LED, PI_OFF);
printf("LED OFF\n");
sleep(DELAY);

}
gpioTerminate();
return 0;

}

Next, open a terminal window in vscode and compile the program from the command line as fol‑
lows:

gcc -Wall blink.c -o blink -lpigpio

Finally, run the program in the terminal by typing:

sudo ./blink

Note that this code requiressudoprivileges. Once started, the LED should begin blinking. Typectrl
-C to exit.

Write a Python program to flash an LED

MakeanewPython source file calledblink.py andenter the followingPython codeusing vscode:

CS326 Lab 3
Blinking LED
from gpiozero import LED
import time

Create LED object using GPIO pin 16
led = LED(16)
DELAY = 0.5

Blink the LED 20 times
for count in range(20):

led.on()
print('LED: on')
time.sleep(DELAY)
led.off()
print('LED: off')
time.sleep(DELAY)

led.close()
print("Done!")

Save the file as blink.py and then run it as follows:

Derek C. Schuurman 171

Exploring Computer Science with the Raspberry Pi

python3 blink1.py

Next, modify the above code to implement the same blinking functionality, but use the toggle()
method in the gpiozero library instead of explicitly turning the LED on or off. Consult the gpiozero
LED class documentation for details on the toggle()method.

Finally, modify the above code to implement the same blinking functionality, but use the blink()
method in the gpiozero LED class.

Note that in embedded systems there is often “more than one way to crack an egg,” but some
methods are better than others.

To learn more about the gpiozero library used in this code, visit the
gpiozero doumentation.

Read an input switch

Wire up an input switch as shown below, connecting to BCM 12 on the Raspberry Pi (leave the LED
wired as it was from the previous step). Once the switch is properly wired, power up your pi once
again and connect over ssh.

Figure 40: Input switch connected to Raspberry Pi GPIO input.

Derek C. Schuurman 172

https://gpiozero.readthedocs.io/en/stable/api_output.html#led
https://gpiozero.readthedocs.io/en/stable/api_output.html#led
https://gpiozero.readthedocs.io/en/stable/api_output.html#led
https://gpiozero.readthedocs.io/en/latest/

Exploring Computer Science with the Raspberry Pi

Be sure to remove power whenever you are performing any wiring.

We can now quickly test our circuit using the raspi-gpio utility. First, set BCM 12 as an input as
follows:

raspi-gpio set 12 ip

Wecanalso turn onaweak internal “pull up” resistor to ensure the input “floats” highwhen the switch
is open:

raspi-gpio set 12 pu

When the switch closes, the input will be forced low. Nowwe can read the switch input on BCM 12 as
follows:

raspi-gpio get 12

We can repeatedly call this command to monitor the input (use the up arrow key so you do not have
to re‑type the command over and over). Push the switch in and out and observe the changing state
of the input pin.

Python program to read the switch

Next, we will create a Python program to count the number of input switch transitions by polling the
input. Using vscode, enter the program switch.py as shown below:

CS326 Lab 3
Count number of input switch transitions

from gpiozero import Button

Create a Button object with pull_up=True
button = Button(12, pull_up=True)

count = 0
previous_state = False # Keeps track of the last state of the button

input

try:
while True:

is_active will be True when button is pressed
if button.is_active and previous_state == False:

count += 1
print(count)
previous_state = True

Check if button is released
if not button.is_active and previous_state == True:

previous_state = False

Derek C. Schuurman 173

Exploring Computer Science with the Raspberry Pi

except KeyboardInterrupt:
pass

Run the code by typing:

python3 switch.py

This program runs a loop that continuously polls the button input. Observe how the output changes
in response to switch transitions. Notewhether the count always increments by onewhen the button
is pressed. To exit the program, type ctrl-c.

Python event‑based program to read the switch

The following Python program, switch_event.py, counts the number of input switch transitions
using input events rather than polling:

CS326 Lab 3
Count input switch events
from gpiozero import Button
from signal import pause

button = Button(12, pull_up=True)
count = 0

def count_press():
global count
count += 1
print(count)

Trigger a callback whenever the button is pressed
button.when_pressed = count_press

try:
pause() # Run script and listen for button presses

except KeyboardInterrupt:
pass

Note that this code uses events instead of polling an input pin. Does the count now increment by one
when the button is pressed?

Python events with switch de‑bouncing

Rewrite the button code to include switch debouncing, which is available in thegpiozero library, as
follows:

from gpiozero import Button
from signal import pause

Set bounce_time to debounce the switch

Derek C. Schuurman 174

Exploring Computer Science with the Raspberry Pi

button = Button(12, pull_up=True, bounce_time=0.1)
count = 0

def count_press():
global count
count += 1
print(count)

Trigger a callback whenever the button is pressed
button.when_pressed = count_press

try:
pause() # Run script and listen for button presses

except KeyboardInterrupt:
print("Exiting...")

Note the addition of a bounce_time parameter. Now confirm that the count always increments
by one when the button is pressed. To learn more about using the GPIO pins with Python, see the
documentation for the gpiozero library.

Lab Questions

1. Why is a current‑limiting resistor necessary for an LED?

2. If you have a 3.3V GPIO output and an LED with Vf = 1.8V that requires 5mA, what resistance
value should you use? Show your calculations. Note that 5mA = 0.005Amps.

3. Power down your circuit and reverse the wiring to the LED. Power up your circuit and run the
blink1.py program again. What happens and why?

4. Why are we using a pull‑up resistor with the button input?

5. When running the switch.py1 program, why does the count sometimes increase by more
than 1 count when the switch is pressed?

6. Contrast polling versus event‑based approaches for reading button inputs. What is the advan‑
tage of using events?

7. Wire the LED as shown in Figure 38 and the switch as shown Figure 40. Make a small modifica‑
tion to switch_event.py so that when the switch is momentarily pressed it latches on the
LED: i.e. when the switch is pressed the LED should come on and remain on. When the switch
is pressed again, the LED should turn off and remain off. Each time the switch is pressed the
code should alternate between turning the LED on and off. Write a program that uses a but‑
ton callback function with debouncing and which uses the toggle()method that is part of
the LED class. Be sure to include header comments and other comments, appropriate constant
definitions, andmeaningful variable names.

Derek C. Schuurman 175

https://gpiozero.readthedocs.io/en/stable/
https://gpiozero.readthedocs.io/en/stable/api_output.html

Exploring Computer Science with the Raspberry Pi

Lab #4: Using the PWM output

Goals: working with PWM (Pulse Width Modulation) signals

The parts required for this lab incliude:

• a red LED (HLMP‑4700 or similar)
• a 220ohm resistor
• a microservo motor (TowerPro SG92R or equivalent)
• 4 tactile button switches

Using a Software PWM to vary the brightness of an LED

Wewill use a PWM (PulseWidth Modulation) signal to vary the brightness of an LED. To begin, wire up
an LED as shown below. Connect the LED anode to the resistor and the cathode to ground. Recall that
the anode of the LED has the longer lead. Use a 220ohm current limiting resistor.

Figure 41: Raspberry Pi with LED output.

Enter the following Python program to control a software PWM signal to the LED:

from gpiozero import PWMLED

Set LED to BCM 16 with 50Hz frequency
LED = PWMLED(16, frequency=50)

Derek C. Schuurman 176

https://www.farnell.com/datasheets/1918234.pdf
https://www.adafruit.com/product/169

Exploring Computer Science with the Raspberry Pi

while True:
try:

duty_cycle = int(input('Enter a PWM duty cycle from 0-100 (enter -1
to end): '))

if duty_cycle == -1:
break

if duty_cycle < 0 or duty_cycle > 100:
print('Error: Duty cycle must be between 0 and 100\n')
continue

Convert percentage to 0-1 range for gpiozero
LED.value = duty_cycle / 100
print(f'Duty cycle = {duty_cycle}%')

except ValueError:
print('Error: enter a number from 1 to 100.\n')

print('Done.')

Question 1: How does changing the duty cycle of a PWM signal affect the brightness of an LED? Why
are you unable to see the 50Hz ON‑OFF pulsing of the PWM? (1 point)

Note: If you have a phonewith a camera, try recording the LED to see how it appearswith a PWM
less than 100%. If it is flickering, whymight this be so?

Using a Software PWM to Control a Microservo

Servomotors are actuators that allow you to addmotion to a system. They’re useful because you can
specify an angle to turn and the micro servo will automatically adjust the position for you. An ordi‑
nary motor will simply turn when power is applied, but the micro servo includes electronics, gears,
and a feedback sensor to control the position of the output. Servos typically come with multiple at‑
tachments, such as wheels or levers (known as “horns”) that attach to the shaft and can be coupled
to whatever mechanical device they are operating.

The position of the servomotor is set by the length of a control pulsewhich the servo typically expects
to receive roughly every 20milliseconds. By precisely setting thewidth of the pulse one can adjust the
position of the servo.

Pick one of the “horns” in your kit and press it onto the servo shaft (don’t worry about tightening it
with a screw for now). The servomotor also comeswith threewires: power (red), ground (brown), and
a wire to send commands (yellow). In general, a servo can draw substantial power, especially when
themotor is accelerating or requires a holding torque, whichmay cause its power supply to fluctuate.
Themotor in your kit requires onlymodest power, sowewill run it using the 5VDCpower directly from
the Raspberry Pi. However, depending on the power draw, youmay require a separate power supply
for your servo motors.

Your microservo motor should have the wires as indicated in the table below:

Derek C. Schuurman 177

Exploring Computer Science with the Raspberry Pi

Color Description

yellow Control input

red Power (+5VDC)

brown GND

Figure 42:Microservo motor with wire extensions.

First, note that the servo motor has a female connector which, because of the pinout, cannot be di‑
rectly plugged into the GPIO header. This can be addressed by inserting jumper wires into the servo
cable header as illustrated with the yellow wire in the photo above. Insert two regular jumper cables
for power and ground and connect them directly to +5V and GND on the GPIO port. Insert a regular
hookup wire into the microservo cable socket to run a connection to the breadboard (see the wiring
diagrambelow). It is strongly recommended that youusewires of the same colors to ensure youdon’t
get confused!

Next, without applying power, connect the servo motor in a circuit as shown to the right. Note that
220ohm resistor is not strictly required, but it is used to help protect the GPIO pin in the event a fault
develops in the servo.

Double checkyour circuit beforeyouapplypower sincean improperlywired5VDCsignal
may destroy your GPIO inputs!

Wewill use BCM 18 for a software PWM output and program it for the correct frequency and duty cycle
(pulse width). Servo motors typically expect a pulse frequency of around 50Hz and pulse widths that
vary from roughly 1‑2ms. The pulse width is set to a value that corresponds to the angle we want to
command.

Derek C. Schuurman 178

Exploring Computer Science with the Raspberry Pi

Figure 43:Wiring the microservo motor to the Raspberry Pi.

For our microservo, a pulse width of 1.5ms corresponds to the midpoint of travel for the servo motor
(0 degrees). A pulse width of 2ms will turn the servo all the way to the right (90 degrees), and a pulse
width of 1ms will turn the servo all the way to the left (‑90 degrees). For this step, we will move the
servo just shy of the full sweep to +/‑72 degrees.

For a 50Hz frequency, theperiod𝑇 = 1
50 evaluates to 20milliseconds. The relationshipbetweenpulse

width (𝑃𝑊) and duty cycle(𝐷) can be calculated using the following equation:

𝐷 = 𝑃𝑊
𝑇 = 𝑃𝑊

20𝑚𝑠
Solving this equation for 3 different angles is summarized in the table below:

Servo Angle (degrees)
Pulse width

(milliseconds) Duty Cycle (%)

0 1.5 ms 7.5%

72 1.9 ms 9.5%

‑72 1.1 ms 5.5%

Derek C. Schuurman 179

Exploring Computer Science with the Raspberry Pi

Attempting to drive micro servos beyond their mechanical limits can cause stripped
gears! To keep a safemargin, ensure that you limit the servo angle to an absolutemaxi‑
mum of +90 and ‑90 degrees!

Enter the following code to step the servo motor through 0, 72, and ‑72 degrees in a loop:

from gpiozero import Servo
import time

DELAY = 2

Use the gpiozero Servo class
SERVO = Servo(18) # Connect servomotor to BCM 18

try:
while True:

print('setting minimum angle...')
SERVO.value = -1 # Equivalent to 5.5% duty cycle
time.sleep(DELAY)

print('centering...')
SERVO.value = 0 # Equivalent to 7.5% duty cycle
time.sleep(DELAY)

print('setting maximum angle...')
SERVO.value = 1 # Equivalent to 9.5% duty cycle
time.sleep(DELAY)

except KeyboardInterrupt:
return to 0 degrees position before exiting
print('Reset angle...')
SERVO.value = 0

Run the servo program and ensure that the servo motor is moving back and forth. The issues with a
software PWM can be exacerbated under an increased CPU load.

Run the servoprogramagain, but this time inducea “fake load”on theCPU.A fake loadcanbe initiated
using the stress-ng utility, which can be installed as follows:

sudo apt install stress-ng

Run the serove program and then make a second ssh connection to the Raspberry Pi to run the
stress-ng program to load the CPUs for 60 seconds by typing:

sudo stress-ng --hdd 4 --timeout 60s

Observe the behavior of the servo motor. Hit ctrl-c to exit the program.

Derek C. Schuurman 180

Exploring Computer Science with the Raspberry Pi

Using a hardware PWM to control a Microservo

In order to use a hardware PWM signal, we need to turn to a different library: the pigpio library. The
pigpio library should already be installed on your Raspberry Pi.

Power up your Pi and start the pipgio service by typing the following from the command line:

sudo service pigpiod start

To verify that the pipgio service is running, type:

sudo service pigpiod status

Now, enter the following code which will continuously cycle through the positions ‑90, 0 , and 90 de‑
grees. The set_servo_pulsewidth method sets a pulse width in microseconds and automati‑
cally sets the PWM frequency to 50Hz. Note that the pigpio library uses standard BCM pin num‑
bers.

import time
import pigpio

Constants
PWM = 18 # Use hardware PWM on BCM 18
DELAY = 2

connect to the pigpio service (which must be running)
pi = pigpio.pi()
if not pi.connected:

exit(0)

pi.set_PWM_frequency(PWM,50); # Set PWM frequency to 50Hz

try:
while True:

print('setting angle = -72 degrees')
pi.set_servo_pulsewidth(PWM, 1100)
time.sleep(DELAY)
print('setting angle = 0 degrees')
pi.set_servo_pulsewidth(PWM, 1500)
time.sleep(DELAY)
print('setting angle = 72 degrees')
pi.set_servo_pulsewidth(PWM, 1900)
time.sleep(DELAY)

except KeyboardInterrupt:
pi.set_servo_pulsewidth(PWM, 0) # turn pulses off

pi.stop()

As before, run the servo program while inducing a “fake load” on the CPU. Initiate a second SSH con‑
nection to the Raspberry Pi in another terminalwindowanduse thestress-ngprogram to load the

Derek C. Schuurman 181

https://abyz.me.uk/rpi/pigpio/

Exploring Computer Science with the Raspberry Pi

CPUs for 60 seconds by typing:

sudo stress-ng --hdd 4 --timeout 60s

Observe the behavior of the servo motor. Note that you can stop the program by typing ctrl-c. If
you wish to stop the pigpiod service, type:

sudo service pigpiod stop

Question 2: How does a hardware PWM compare to the software PWM?Why? (1 point)

Question 3: Wire four pushbuttons on your breadboard (if need be, refer to the last lab) connected to
four suitable GPIO pins. One buttonwillmove the servo left (‑72 degrees), another right (+72 degrees),
another to the center (0 degrees), and the last button will stop the servo. Using a hardware PWM and
the pigpio library, create a program that uses a state machine that shifts states depending on the
button presses. When the stop button is pressed, the program should exit the statemachine, stop the
servo and exit the program. Your program should be written using a state machine class that must
include the following:

• use the pigpio library for all GPIO functions and use a hardware PWM
• define a set of state variables: 'SERVO_LEFT,'SERVO_CENTER','SERVO_RIGHT'
• Create a State_Machine class

– Include all the following methods in this same class:

* __init__(self,pi)
· copy pigpio object passed as a constructor variable to self.pi
· self.states= {'SERVO_LEFT,'SERVO_CENTER','SERVO_RIGHT'}
· initialize all input buttons with a pullup and a “glitch filter” of 1000us (see pullup
docs and glitch filter docs)

· define a callbackmethod for all four buttons to call the appropriate method on a
FALLING_EDGE event within this same class (see the callback docs)

· initialize a variable to store the current state called self.state and initialize
to SERVO_LEFT

· move servo to ‑72 degrees

* left_button_callback(self,...)
· update the state variable to SERVO_LEFT
· print the new state
· move the servo to ‑72 degrees and return

* center_button_callback(self,...)
· update the state variable to SERVO_CENTER
· print the new state

Derek C. Schuurman 182

https://pinout.xyz/
https://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/python.html#set_pull_up_down
http://abyz.me.uk/rpi/pigpio/python.html#set_pull_up_down
http://abyz.me.uk/rpi/pigpio/python.html#set_glitch_filter
http://abyz.me.uk/rpi/pigpio/python.html#callback

Exploring Computer Science with the Raspberry Pi

· center the servo at 0 degrees and return

* right_button_callback(self,...)
· the state variable to SERVO_RIGHT
· print the new state
· move the servo to +72 degrees and return

* stop_button_callback(self,...)
· Turn PWM off
· print message and exit program

* get_state(self)
· ensure current state is in the set of self.states
· return current state

Your man program should define the state machine class, instantiate a state machine object as indi‑
cated in the following code skeleton:

from signal import pause
import pigpio

Define State_Machine class here

connect to the pigpio service (which must be running)
pi = pigpio.pi()
if not pi.connected:

exit(0)
pi.set_PWM_frequency(PWM,50); # Set PWM frequency to 50Hz

sm = State_Machine(pi) # Instantiate state machine
try:

pause()
except KeyboardInterrupt:

pi.stop()
print("exiting")

Question 4: Draw an official UML state diagram for your code in question 5.
ForUMLstatediagrams, consult thisUMLdocumentationandbesure to include thesymbol to indicate
the initial state and the final state. Consider using draw.io.

Question 5: What kind of state machine is this (Mealy or Moore)?

Question 6: (a) Is this state machine deterministic? (b) Is this state machine receptive?

Derek C. Schuurman 183

https://www.uml-diagrams.org/state-machine-diagrams.html
https://app.diagrams.net/

Exploring Computer Science with the Raspberry Pi

Lab #5: Scheduling and Kernel latency

Purpose: experimentally determine latency in a regular Linux kernel and compare it with a modified
preemptible kernel.

Introduction

The term latency, when used in the context of the OS Kernel, is the time interval between the occur‑
rence of an event and the time when that event is handled. This can be critical in certain embedded
applications where a computer must respond to an external event within a guaranteed time.

How can wemeasure latency on the Raspberry Pi? One technique is to connect two GPIO pins with a
wire and set one as an output and the other as an input. The output can be used to trigger an edge on
the input allowing us to measure the elapsed time between the trigger and the event handler. This
process canbe repeatedmany times to compute an average response time. While thiswill not provide
an exact measurement, it will give a good approximation of the type of latencies wemight expect.

Figure 44:Wire jumper to test latency.

To begin, connect GPIO pin BCM 16 to pin BCM 18 as shown in the figure above. If you do not have
a female‑to‑female jumper wire, the two pins can be connected with two jumpers to the breadboard
where they can be connected.

Next, power up your Raspberry Pi and connect using ssh. In order tomake accurate timingmeasure‑
ments, wewill make use of the time_ns() function, which provides nanosecond resolution of time.
This function is only available in Python version 3.7 and later versions, so confirm you are running a
supported version of Python by typing:

Derek C. Schuurman 184

https://www.python.org/dev/peps/pep-0564/

Exploring Computer Science with the Raspberry Pi

python3 --version

We can estimate latency in Python by measuring the delay from the time that the output pulse is
asserted to the time it takes for a callback function to respond to the input event. To do our test,
create a program called latency.py as follows:

CS326 Lab 6
Experimentally record latency from GPIO event to callback function
from gpiozero import DigitalInputDevice, DigitalOutputDevice
import time

Constants
COUNT = 5000 # Number of samples
HISTOGRAM_SIZE = 1000
NANOSECS_PER_MICROSEC = 1000

GPIO pin objects
pin = DigitalInputDevice(16) # Input pin
pout = DigitalOutputDevice(18) # Output pin

Global variables for timing measurements
t1 = 0
sum_of_latencies = 0
max_latency = 0
histogram = [0] * HISTOGRAM_SIZE

Callback function for input
def input_callback():

global t1, max_latency, sum_of_latencies, histogram

record time elapsed and store
latency = time.time_ns() - t1
if latency > max_latency:

max_latency = latency

latency_in_microseconds = int(latency/NANOSECS_PER_MICROSEC)
if latency_in_microseconds < HISTOGRAM_SIZE:

histogram[latency_in_microseconds] += 1

sum_of_latencies += latency

Set up the input pin callback on high input
pin.when_activated = input_callback

Loop numerous times toggling output to trigger input event
for count in range(COUNT):

t1 = time.time_ns() # Time is measured from here, but output changes
on next line

pout.on() # set output HIGH to initiate a callback
time.sleep(0.01) # sleep for a while before taking another

Derek C. Schuurman 185

Exploring Computer Science with the Raspberry Pi

measurement
pout.off() # set output LOW

Output histogram of latencies
print('Histogram of latencies measured (in microseconds):')
for x in range(len(histogram)):

print(f'{x+1},{histogram[x]}')

print(f'Average latency: {(sum_of_latencies/COUNT)/NANOSECS_PER_MICROSEC}
microseconds')

print(f'Maximum latency: {max_latency/NANOSECS_PER_MICROSEC} microseconds'
)

Note that the code abovemakes use of the time_ns() function but that the times are converted to
microseconds. Run the code as follows:

python3 latency.py

Note that the program outputs an average andmaximum value as well as a histogram of values (all in
microseconds). Run the program again and redirect the output to a text file as follows:

python3 latency.py > histogram.txt

Question 1: Run the program and capture the histogram to a text file. Transfer the histogram file
to your laptop or workstation and use a spreadsheet to plot a histogram of the latencies. Be sure to
label the axes and use an appropriate horizontal scale and a bin size of 1 us to show the shape of the
histogram.

Question 2: What do you observe about the latency? What causes variations in the latency?

Using Latency Testing Tools

The previous test code runs in a Python interpreter which adds additional overhead. The Linux kernel
has a set of optimized tools that can be used for latency benchmarking. To install some of the tools
on your Raspberry Pi, type the following in a terminal:

sudo apt install rt-tests stress-ng

The rt-tests package includes a latency measurement tool called cyclictest. To use this tool
to test latency, type:

sudo cyclictest --smp -p95 -m

The output of cyclictest will show measurements for each of the CPU cores. You should see an
output something like the following:

/dev/cpu_dma_latency set to 0us
policy: fifo: loadavg: 0.12 6.76 8.02 1/207 8001

Derek C. Schuurman 186

Exploring Computer Science with the Raspberry Pi

T: 0 (7560) P:95 I:1000 C: 116205 Min: 5 Act: 20 Avg: 17 Max: 198
T: 1 (7561) P:95 I:1500 C: 77457 Min: 5 Act: 18 Avg: 18 Max: 172
T: 2 (7562) P:95 I:2000 C: 58086 Min: 5 Act: 17 Avg: 16 Max: 200
T: 3 (7563) P:95 I:2500 C: 46463 Min: 5 Act: 16 Avg: 17 Max: 139

In the above output, themaximum latencymeasured for CPU0 is 198us, for CPU2 it is 172us, for CPU3
it is 200us, and CPU4 is 139us. Type ctrl-c to end the test. To find out more about cyclictest,
type:

man cyclictest

The latency measurements can be exacerbated under an increased CPU load. Repeat the
cyclictest as above, but this time induce a “fake load” on the CPUs just before starting the
test. Initiate a second ssh connection to the Raspberry Pi and in another terminal window use the
stress-ng program to load the CPUs for 60 seconds by typing:

sudo stress-ng --hdd 4 --timeout 60s

Question 3: Why are there differences between average and maximum latencies and between the
four processors?

Reducing Latency by using the Preemptible (low latency) Kernel Option

In this next part we are going to build the Linux kernel so that it produces more predictable timing
and lower latencies. The Linux kernel can be configured with an option that minimizes the amount
of kernel code that is non‑preemptible (except places that are critical sections in the kernel). This
option is not enabled by default in the standard Linux kernel, and sowewill need to compile a custom
kernel.

Since the Linux kernel is a large program withmillions of lines of code, it can take considerable time
to compile. To speed up the compilation time, one can cross‑compile the modified ARM kernel on a
hefty workstation and then transfer the new kernel to the Raspberry Pi. For this lab, we will compile
directly on the Raspberry Pi.

First, install the build dependencies:

sudo apt install bc bison flex libssl-dev make libncurses-dev

Next, download and build a new ARM custom kernel on the Raspberry Pi by typing the following in a
terminal:

git clone --depth=1 --branch rpi-6.12.y https://github.com/raspberrypi/
linux

Note that omitting the --depth=1 will download the entire repository history and will take a very
long time!

Derek C. Schuurman 187

https://www.raspberrypi.com/documentation/computers/linux_kernel.html#building

Exploring Computer Science with the Raspberry Pi

We have specified the rpi-6.12.y branch since this is the first version of the kernel that in‑
cludes the patch for a fully preemptible kernel.

The next step is to prepare the default configuration of the kernel. For a 64‑bit ARMkernel, this is done
as follows:

cd linux
KERNEL=kernel8
make bcm2711_defconfig

SettingKERNEL=kernel8 selects the 64‑bit kernel for theARMprocessor. Beforeproceeding further
with compiling the kernel, we will need to customize the kernel settings. To make changes to kernel
settings we can use the makemenu utility as follows:

make ARCH=arm64 menuconfig

This utility essentially provides a friendly menu interface to modify numerous settings in the kernel
make config file. Use the arrow keys, the return key, and the tab key to navigate. These settings will
later be used to guide the compilation process to produce a Linux kernel that is customized to your
individual settings.

For our purposes, we want to enable the fully preemptible kernel model. As mentioned earlier, this
feature compiles the kernel so that all kernel code is preemptible except for a few select critical sec‑
tions. To enable the preemption model from within the menuconfig utility, select General setup ‑>
Preemption Model. Under the Preemption Model setup select Fully Preemptible Kernel (Real‑Time).

It is also recommended to give the kernel a customname to distinguish it from other kernels. You can
change the kernel name under General setup ‑> Local Version (give it a name like -lab5).

Once all the customizations are set, save the configuration and exit. After making changes to the con‑
figuration, a 64‑bit ARM kernel can then be compiled by typing the following:

make -j6 Image.gz modules dtbs

This command cross‑compiles a new ARM kernel with related modules. At this point, find something
useful to do while the kernel code is compiling.

When the compilation completes, install the kernel as follows:

sudo make -j6 modules_install

Run the following commands to create a backup image of the current kernel, install the fresh kernel
image, overlays, README, and unmount the partitions:

sudo cp arch/arm64/boot/Image.gz /boot/firmware/$KERNEL-preempt_rt.img

Derek C. Schuurman 188

https://xkcd.com/303/
https://xkcd.com/303/

Exploring Computer Science with the Raspberry Pi

To view all the main kernel files, type:

ls -al /boot/firmware

The file listing will display full filenames which should include new kernel files with the lab5 label
(or whatever you set the Local Option to in the menuconfig step earlier). Make note of the file name
that begins with kernel8 following by the label you selected earlier.

To enable our new custom kernel on the next boot, edit the /boot/firmware/config.txt file
as follows:

sudo nano /boot/firmware/config.txt

Add a line pointing to the new kernel like the following to the end of /boot/config.txt under a
section labelled with [all]:

[all]
kernel=kernel8-preempt_rt.img

Finally, reboot into the new kernel by typing:

sudo reboot

Once the Raspberry Pi has rebooted, connect to a shell and verify that the new kernel is running using
the following command:

uname -a

The new kernel name should now be reportedwith the custom Linux kernel label string you set along
with a string indicating it is running the PREEMPT_RT option.

Congratulations! You have successfully configured, compiled, and installed a new Linux kernel on
your Raspberry Pi! To learnmore about building a kernel for the Raspberry Pi, see the kernel building
documentation.

Interested in being one of the cool kidswho contribute to the Linux kernel? If so, visit kernelnew‑
bies.org.

Question 4: Repeat the cyclictest in one terminal while running the stress-ng “fake load” in
another terminal. How does the latency of the regular Linux kernel compared to the one with the
preemptible kernel? Where does the difference appearmost visible (minimum, average, ormaximum
latencies)?

Note: When you complete this lab, reset your Raspberry Pi to boot the regular kernel for fu‑
ture labs. To return to the regular Linux kernel, comment out the lines you added in /boot/

Derek C. Schuurman 189

https://www.raspberrypi.com/documentation/computers/linux_kernel.html
https://www.raspberrypi.com/documentation/computers/linux_kernel.html
https://kernelnewbies.org/
https://kernelnewbies.org/

Exploring Computer Science with the Raspberry Pi

firware/config.txt by placing a # in front of the line. You will need to reboot each time
you change your kernel configuration for the new kernel to become active.

Latency Histograms

Return your Raspberry Pi to running the regular Linux kernel and reboot (see the note above). Use the
following argument with cyclictest to produce a histogram of the latencies (run stress-ng as
well to ensure there is a load):

sudo cyclictest -h 100 -q -i 1000 -l 100000 -p 90 --smp

After about a minute or so you should see a list of columns and rows of text data. The first column is
the latency bin (in microseconds) and the next four columns represent the counts for that latency for
each of the four CPU cores on the ARM processor in the Raspberry Pi. To capture the output, redirect
the standard output to a text file as follows:

sudo cyclictest -h 100 -q -i 1000 -l 100000 -p 90 --smp > histogram.txt

Question 5: Transfer the histogram.txt file to a spreadsheet to plot the histogram (the first col‑
umn are the bins for latency inmicroseconds and the other columns are for CPUs 1‑4). Plot each CPU
with a different color and add a legend and a title for the plot (indicating which kernel was used) and
add x and y axis labels. Include the plot in your lab report. Use an appropriate horizontal scale that
shows the overall shape of the histogram.

Question6: Repeat thehistogram test, but this timeuse the custompreemptible Linux kernel. Just as
youdid in theprevious question, use a spreadsheet to plot the histogram (the first columnare thebins
for latency in microseconds and the other columns are for CPUs 1‑4). Set an appropriate horizontal
scale for the data as it was printed with a separate plot using a different color for each CPU plot. Add
a legend and a title for the plot (indicating the kernel used) and add appropriate x and y axis labels.

Question 7: Comment on the differences between the two histograms for the different kernels. How
might the preemptible kernel make a difference for time‑critical tasks?

Question 8: Read about the PREEMPT_RT kernel patch for Linux and describe how this patch
improves latency and makes timing more predictable. See the article, “A realtime preemption
overview”.

Lab 6: M2M Communications with MQTT

Purpose: to explore Machine‑to‑Machine communication using MQTT

Derek C. Schuurman 190

https://lwn.net/Articles/146861/
https://lwn.net/Articles/146861/

Exploring Computer Science with the Raspberry Pi

Exchanging simplemessages using MQTT

In this lab we will explore machine‑to‑machine (M2M) communications using a protocol called MQTT.
MQTT is a bandwidth‑efficient, lightweight protocol allowing clients to publish and subscribe data
to a special “broker” server. For this course we will use the test MQTT broker server named test.
mostquitto.org.

We will build a system to control an LED using a button by sending messages through the network
using theMQTTprotocol. MQTTallowscommunicationbetweenmachinesusinga simple, lightweight
protocol. The protocol requires an intermediate broker server that a client can publish or subscribe to
as illustrated in the figure below.

Figure 45: Raspberry Pi using in an IoT application

Before proceeding, briefly read the following background FAQ page about MQTT at mqtt.org/faq

TheEclipseMosquitto project provides anopen sourceMQTTmessagebroker and tools. Open anssh
connection to your Raspberry Pi and install the mosquitto client tools as follows:

sudo apt install mosquitto-clients

These client tools will allow you to publish and subscribe messages to a broker. If you want to install
them on your own computer, see https://mosquitto.org/download/ and consult the documenta‑
tion.

For this lab we will make use of a public MQTT broker. Two options are:

1. mqtt.eclipse.io
2. test.mosquitto.org

Derek C. Schuurman 191

http://mqtt.org/faq
https://mosquitto.org/
https://mosquitto.org/download/
https://mqtt.eclipseprojects.io/
https://test.mosquitto.org/

Exploring Computer Science with the Raspberry Pi

These public MQTT brokers are open and do not require usernames or passwords which comes
with some security issues.

On a separate desktop or laptop workstation type the following on the command line:

mosquitto_sub -h test.mosquitto.org -t rpi/jcalvin

This command uses theMQTT protocol to subscribewith the broker servertest.mosquitto.org
to the topic rpi/jcalvin (youmay want to replace jcalvinwith your own username).

Next, open a shell on your local Raspberry Pi and publish a message to the same topic and broker
server by entering the following:

mosquitto_pub -t cs326/jcalvin -m "Hello World" -h test.mosquitto.org

Again, replace jcalvinwith your own username (using the same broker server you used in the last
command). Note that after you hit enter you should see the "Hello World"message appear on
the workstation. You have now successfully used MQTT to transfer amessage from your Raspberry Pi
to aworkstation! Moreover, you have transferred amessagewithout needing to know the IP address of
the subscriber since messages are nicely handled by the broker server! Cool, eh?

Try sending a fewmoremessages using different topics but add the-d flag (debug) to view the details
of thepackets thatareexchanged. Note thatusingpublicMQTTbrokers liketest.mosquitto.org
comes with security issues and you should not publish any sensitive information.

Publishing an event using MQTT

The following step is best done using two Raspberry Pi computers. Wire one Raspberry Pi with a push
button to BCM 12 which connects the pin to ground when the switch is pressed. Power up the Rasp‑
berry Pi and connect to it using ssh. Install the Python MQTT library on the Raspberry Pi in a Python
virtual environment as follows:

python3 -m venv --system-site-packages lab6
source lab6/bin/activate
pip3 install paho-mqtt

Next, enter the new folder created called lab6. Enter the following program which sends an MQTT
message whenever the button is pressed.

Lab 6
This program sends an MQTT message whenever a button is pressed.

import os
from gpiozero import Button
import paho.mqtt.client as mqtt

Derek C. Schuurman 192

Exploring Computer Science with the Raspberry Pi

Constants
PORT = 1883
QOS = 0
KEEPALIVE = 60
TOPIC = 'jcalvin/button'
MESSAGE = 'Button pressed'

Set hostname for MQTT broker
BROKER = 'test.mosquitto.org'

Callback when a connection has been established with the MQTT broker
def on_connect(client, userdata, flags, reason_code, properties):

if reason_code == 0:
print(f'Connected to {BROKER} successful.')

else:
print(f'Connection to {BROKER} failed. Return code={rc}')

Callback function when button is pressed
def button_callback(channel):

global client
(result, num) = client.publish(TOPIC, MESSAGE, qos=QOS)
if result == 0:

print(f'MQTT message published -> topic:{TOPIC}, message:{MESSAGE}
')

else:
print(f'PUBLISH returned error: {result}')

define button input
button = Button(12, pull_up=True, bounce_time=0.1)

Setup MQTT client and callbacks
client = mqtt.Client(mqtt.CallbackAPIVersion.VERSION2)
client.on_connect=on_connect
client.connect(BROKER, PORT, KEEPALIVE)

Detect a falling edge on input pin
button.when_pressed = button_callback

try:
client.loop_forever()

except KeyboardInterrupt:
client.disconnect()

print('Done')

Modify the code to replace jcalvin with your own unique username. Observe that the code uses
callback functions to detect the button pushes and to handle MQTT events. Run the program in the
Raspberry Pi terminal as follows:

python3 mqtt-button.py

Derek C. Schuurman 193

Exploring Computer Science with the Raspberry Pi

Next, open a command line on anohter workstation and subscribe to the same topic on the same
MQTT broker used in the program you entered on your Raspberry Pi:

mosquitto_sub -h tes.mosquitto -t **jcalvin**/button

(replacejcalvinas appropriate). Now, observe thatwhenyoupress thebuttonon thePi you should
see a message received on your workstation! Note once again that the program does not require the
IP addresses, just the name of the broker. Test the operation of your code before proceeding to the
next step.

Remote control of an LED

Next, wire up an LED circuit on a second Raspberry Pi. Refer to a previous lab to recall how to wire an
LED and an appropriate value for a series current‑limiting resistor.

Usingssh, opena terminal and install thePythonMQTT library on the secondRaspberry Pi in a virtual
environment, just as you did earlier on the other Pi. Next, enter the following Python programnamed
mqtt-led.py:

Lab 6
This program turns on an LED in response to an MQTT message.

from gpiozero import LED
import paho.mqtt.client as mqtt

Constants
TOPIC = 'jcalvin/button'
PORT = 1883
QOS = 0
KEEPALIVE = 60

setup LED on BCM 16
led = LED(16)

Set hostname for MQTT broker
BROKER = 'test.mosquitto.org'

Callback when a connection has been established with the MQTT broker
def on_connect(client, userdata, flags, reason_code, properties):

if reason_code == 0:
print(f'Connected to {BROKER} successful.')

else:
print(f'Connection to {BROKER} failed. Return code={rc}')

Callback when client receives a message from the broker
Use button message to turn LED on/off
def on_message(client, data, msg):

print(f'MQTT message received -> topic:{msg.topic}, message:{msg.
payload}')

Derek C. Schuurman 194

Exploring Computer Science with the Raspberry Pi

if msg.topic == TOPIC:
if led.is_lit

led.off()
else:

led.on()

Setup MQTT client and callbacks
client = mqtt.Client(mqtt.CallbackAPIVersion.VERSION2)
client.on_connect = on_connect
client.on_message = on_message

Connect to MQTT broker and subscribe to the button topic
client.connect(BROKER, PORT, KEEPALIVE)
client.subscribe(TOPIC, qos=QOS)

try:
client.loop_forever()

except KeyboardInterrupt:
client.disconnect()
print('Done')

Onceagain,modify the code to replacejcalvinusedas thetopicwith yourownuniqueusername.
Run both programs at the same time on the different Raspberry Pi’s. Note that when the button is
pressed on one Raspberry Pi, the LED light toggles on the other Raspberry Pi. Note that neither Rasp‑
berry Pi is aware of the IP address of the other, just the name of a common broker server. In fact, this
will work even if both Raspberry Pi’s are on opposite sides of the globe.

If you only have one Raspberry Pi, you may proceed by wiring the LED on the same Raspberry
Pi as the switch. In this case, the messages will be sent back and forth via the broker and the
button should turn on the local LED. However, it is much less exciting to run this on one device.

Lab Questions

Question 1: What does MQTT stand for and which port does it normally use?

Question 2: Why is MQTT well‑suited for the Internet of Things (IoT)?

Question 3 Using the -d command line switch, send a message using to the mosquitto_sub and
mosquitto_pub commands. How often is a PINGREQ and PINGRESP packet sent when subscrib‑
ing to a topic on a broker?

Question 4: Are your MQTT messages completely secure and private as they travel on the network?
Consult the MQTT pages for more information.

Question 5: Write a single concise program that both publishes and subscribes to the same topic and
measures the roundtrip time for a published message to be received. Your program should operate
with the following sequence:

Derek C. Schuurman 195

Exploring Computer Science with the Raspberry Pi

Lab #7: I2Cwith Local Web Server and Local Database

Purpose: Introduction to I2C, storing sensor data in databases, and viewing with web clients.

Reading Temperature

In this lab we will use the Raspberry Pi, create a system that can measure and store temperature and
display data in a helpful webpage. This lab will be restricted to running on a local network as illus‑
trated below.

We will be reading temperature with the TC74 temperature sensor Although this sensor has only a
modest precision of about ±2°C it will be adequate for the purposes of this lab. The first step will be
wire up the TC74 temperature sensor. The TC74 communicates using an I2C serial connection and
requires two pullup resistors on the SDA a SCL lines. These pullup resistors should be placed from
the SDA and SCL lines to the 3.3V supply and should have a value of 4.7kohms as shown in the photo
below. Consult a GPIO pinout diagram to ensure your wiring is correct (in particular, do not confuse
the 3.3V and 5V pins on the GPIO since they are next to each other). An image of the complete wiring
is shown below.

Derek C. Schuurman 196

http://ww1.microchip.com/downloads/en/DeviceDoc/21462D.pdf
https://pinout.xyz/

Exploring Computer Science with the Raspberry Pi

Once the wiring for the Raspberry Pi GPIO pins is complete, power up your Raspberry Pi and connect
using SSH. Make a new lab8 folder as follows:

mkdir lab8
cd lab8

Next, ensure the I2C command line tools are installed to test the TC74 temperature sensor:

sudo apt-get install i2c-tools

The I2C kernel module should have been enabled in Lab 1. If it was not, enable the module as fol‑
lows:

sudo raspi-config

Select Interfacing Options→I2C and then reboot by typing:

sudo reboot

Ensure your username is in the group permissions for talking to I2C devices as follows:

sudo usermod -a -G i2c user

whereuser is set to your username. Next, scan the I2Cbus for the TC74 temperature sensor to ensure
it can be found:

/usr/sbin/i2cdetect 1

If the TC74 is present and wired properly, you should see a device reported at address 48hex. Next,
test if it is possible to read the temperature from that address as follows:

Derek C. Schuurman 197

Exploring Computer Science with the Raspberry Pi

/usr/sbin/i2cget -y 1 0x48 0 b

If everything is wired correctly and functioning, you should see a value returned from this query.

Question 1: Include a photo of your finished wiring showing your GPIO port connections and bread‑
board wiring.

Question 2: What value is returned from thei2cget command (see above)? Which base is this num‑
ber displayed in and what are the units? Consult the TC74 datasheet if necessary.

Connecting to the TC74 with Python

Next, install the systemmanagement bus library for accessing the I2C bus as follows:

sudo apt-get install python3-smbus

The SMBus enables I2C for communications and canbeused to communicatewith simple devices. We
can test the sensor by creating and running temptest.py program as follows:

This program periodically reads an I2C TC74 temperature sensor and
prints the reading.

import smbus
import time

constants
BUS = 1 # I2C bus number
ADDRESS = 0x48 # TC74 I2C bus address
DELAY = 0.5 # delay between reads

Connect to I2C bus
bus = smbus.SMBus(BUS)

try:
while True:

temp = bus.read_byte(ADDRESS)
print(f'{temp} degrees C')
time.sleep(DELAY)

except KeyboardInterrupt:
bus.close()
print('Done')

Once youhave verified that your temperature sensor isworking in Python,move on to the next part.

Storing Temperatures in an SQL database

We will store the data in a local database. MySQL is a common database engine, but is a little much
for a simple temperature database. SQLite is a suitable, lightweight alternative which supports most
SQL commands. SQLite is also convenient since it does not run as a server and stores data in a single

Derek C. Schuurman 198

http://ww1.microchip.com/downloads/en/DeviceDoc/21462D.pdf
https://www.sqlite.org/

Exploring Computer Science with the Raspberry Pi

file which can be placed anywhere. Install the SQLite database as follows:

sudo apt install sqlite3

Setup an sqlite database in your lab8 folder as follows:

sqlite3 temperature.db

Once SQLite launches, create a table to store temperature data by typing the following SQL com‑
mand:

CREATE TABLE temperaturedata (datetime TEXT NOT NULL, temperature double
NOT NULL);

Make sure you include a semicolon at the end of the command to indicate that your SQL command is
complete. Note that SQLite does not have a storage class for dates and/or times so we will store the
date and time as a text field. Next, check that the table was successfully created by typing:

sqlite> .tables

Question 3: Type the following sqlite3 command and show the output from this command. What
does this output represent?

pragma table_info('temperaturedata');

Next, quit SQLite3 by typing the following at the prompt:

sqlite> .quit

Your database should now be set for recording date/time and temperature data! Since we will be
time‑stamping our temperature data, we need to ensure the time and date settings are correct on
your Raspberry Pi. Set the time zone as follows:

sudo dpkg-reconfigure tzdata

Next, enter the following Python program called logtemp.py:

This program stores an I2C TC74 temperature sensor reading every 10
seconds to an SQLite database.

import smbus
import sqlite3
import time
import sys
import signal

Constants
BUS = 1 # I2C bus number

Derek C. Schuurman 199

Exploring Computer Science with the Raspberry Pi

ADDRESS = 0x48 # TC74 I2C bus address
FILENAME = 'temperature.db' # SQLite filename
TABLE = 'temperaturedata' # SQLite table name
PERIOD = 10.0 # Sample period (seconds)

def timer_handler(signum, frame):
''' Periodic timer signal handler
'''
global bus
global db
global cursor
temp = bus.read_byte(ADDRESS) # Read TC74 sensor
Insert data into database
sqlcmd = f"INSERT INTO {TABLE} VALUES (datetime('now','localtime'),{

temp})"
cursor.execute(sqlcmd)
db.commit()

Connect to I2C bus
bus = smbus.SMBus(BUS)

Connect to the database
db = sqlite3.connect(FILENAME)
cursor = db.cursor()

Setup signal to call handler every PERIOD seconds
signal.signal(signal.SIGALRM, timer_handler)
signal.setitimer(signal.ITIMER_REAL, 1, PERIOD)

Continuously loop blocking on signals
try:

while True:
signal.pause() # block on signal

except KeyboardInterrupt:
bus.close()
db.close()
print('Done')

This program runs a periodic task to read the temperature every 10 seconds and stores it in an SQLite
database.

The code also uses global variables for expediency and convenience, but global variables are
normally not recommended. One could implement a single class that encapsulates the signal
handler along with the variables to avoid using globals.

Question 4: What might happen to the SQL database and available disk space if this code were to
continue running for years (or perhaps decades)?

In order to address this issue identified above, add the following line of code after the data is inserted

Derek C. Schuurman 200

Exploring Computer Science with the Raspberry Pi

into the database and before the db.commit()method is called:

sqlcmd=f"DELETE FROM {TABLE} WHERE datetime < datetime('now','localtime
','-1 hour')"

cursor.execute(sqlcmd)

Note that this line of code will need its own separate call to cursor.execute(sqlcmd) in order
for SQLite to execute the query.

Question 5: What does the above SQL command do? Consult the SQLite3 documentation if need be
at: https://www.sqlite.org/docs.html.

Running a local webserver

Next,wewant to createawebpage thatdisplays thedata fromthedatabase. For this lab,wewill install
a localwebserver running on the Raspberry Pi. For this lab we will use lighttpd, a simple, lightweight
web server that should be adequate for our purposes. We will also use PHP for server‑side scripting.
To install these packages, type the following:

sudo apt update
sudo apt -y install lighttpd

Test the web server by creating a simple web file as follows:

sudo nano /var/www/html/index.html

Type the message “hello world” into the file and then save it. Point your browser to http://a.b
.c.d where a.b.c.d is the IP address of your Raspberry Pi, and a “hello world” web page should
appear.

Question 6: Which network port number is lighttpd listening on for web requests? You can deter‑
mine the port number by using netstat and typing the following at the command line:

sudo netstat -ltnp

The ports used will be listed in rows. Identify the row(s) listing lighttpd as the program name and
note the number after the colon in the “Local address” column. (1 point)

Putting it all together

Next we will create a webpage using PHP to access the SQLite database to retrieve the temperature
data and then use a Javascript plotting library to create a chart of the temperature data. Enable PHP
as follows:

sudo apt -y install php-fpm php-cgi php-sqlite3
sudo lighty-enable-mod fastcgi
sudo lighty-enable-mod fastcgi-php
sudo service lighttpd restart

Derek C. Schuurman 201

https://www.sqlite.org/docs.html
https://www.lighttpd.net/

Exploring Computer Science with the Raspberry Pi

Next, set the permissions for the web folder so your user can edit web files as follows:

sudo chown -R www-data:www-data /var/www
sudo chmod -R 775 /var/www
sudo usermod -a -G www-data jcalvin

where jcalvin is the username on your Raspberry Pi. Reboot the Raspberry Pi and the lighttpd
webserver should now be running. Next, enter the code for chart.php:

<html>
<head>

<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
</head>
<body>
<h2>Raspberry Pi Temperature Local Data</h2>
<div id='chart_div'></div>
<?PHP
Open local SQLite database
try {

$db = new SQLite3('/home/pi/temperature.db');
}
catch (Exception $exception) {
echo '<p>There was an error connecting to the database!</p>';

}
?>

<script>
var data = [{

x: [
<?PHP

Use PHP to query database and build JavaScript array
$query = 'SELECT * FROM temperaturedata';
$result = $db->query($query) or die('Query failed');
while ($row = $result->fetchArray()) {

echo " '" . $row['datetime'] . "',\n";
}

?>
],
y: [

<?PHP
while ($row = $result->fetchArray()) {

echo " " . $row['temperature'] . ",\n";
}

?>
],
type: 'scatter'

}];

var layout = {
xaxis: { title: 'Add appropriate y axis label here' },
yaxis: { title: 'Add appropriate x axis label here' }

Derek C. Schuurman 202

Exploring Computer Science with the Raspberry Pi

};

Plotly.newPlot('chart_div', data, layout);
</script>
</body>
</html>

Observe that this file contains a combination of HTML, PHP and Javascript code (both server‑side and
client‑side code). Place the file inside the /var/www/html folder.

Note that the path for the SQLite database in this program must match the path you used for the
database in your python program. If vscode has trouble editing this file remotely you can also edit it
directly using:

sudo nano /var/www/html/chart.php

This codeusesPHP to retrieve the temperaturedata fromtheSQLitedatabaseandcreatesaJavascript
data structure that is usedbyplotly.js, a handyJavascript library, to createanifty chart. Note that
there are a wide variety of nifty open source Javascript chart libraries that you may wish to explore.
For more information about plotly.js, visit: https://plot.ly/javascript/

Next, you will need to set the permissions of the Sqlite3 database file so that the Lighttpd server has
permissions to open and read the temperature data. You will also need to ensure your web server
has execute privileges in your home folder. This can be done by navigating to the folder with your
database file and typing the following commands:

chgrp www-data /home/jcalvin
chmod g+x /home/jcalvin
sudo chgrp www-data temperature.db
chmod 644 temperature.db

where jcalvin is your username. Next, start running your Python temperature logging program in
the background as follows:

nohup python3 logtemp.py &

Finally, steer your workstation/laptop browser to the following URL and observe your webpage plot‑
ting temperature data:

http://a.b.c.d/chart.php

where a.b.c.d is the IP address of your Raspberry Pi.

If your webpage fails to load you will need to use some of the debugging features available in your
browser. For example, with the Chrome browser, press *crtl-shift-i to show the debugging
tools as well as the Javascript console.

Derek C. Schuurman 203

https://plot.ly/javascript/

Exploring Computer Science with the Raspberry Pi

Try varying the temperature by touching on your sensor and observing if it measures a rise in temper‑
ature.

Question 7: Note that yourweb client should be only accessible on your local network. What security
issuesmight arise if theweb server on your Raspberry Pi (or other IoT devices)were to bemade visible
on the internet?

Question 8: Include a picture of the chart in thewebpage (you can download an image by clicking the
download option on the menu at the top of the chart). Ensure proper axes labels are shown.

Some fine tuning

Notice thatlighttpd runs several processes. You can see all the processes that are running by using
the following command:

sudo service lighttpd status

Note the number of tasks and the list of processes in the output listed. Note that lighttpd runs
1 process, but several other processes are spawned relating to php‑cgi. Every additional process re‑
quiresmemory and resources, which we like tominimize whenworking with embedded systems. We
are not expecting highweb traffic to our Raspberry pi, sowe can reduce the number of PHPprocesses.
To do this, edit the lighttpd configuration file as follows:

sudo nano /etc/lighttpd/conf-enabled/15-fastcgi-php.conf

Edit the file to reduce the PHP_FCGI_CHILDREN to 0. Save the file and restart the web server as
follows: sudo service lighttpd restart

Use the service status command from above and note how many PHP processes are running
now. Test andmake sure your webpage can still be viewed in your browser.

To disable the lighttpdweb service from starting up on the next reboot boot, type:

sudo systemctl disable lighttpd

Question9: Howmanyprocesses are running that belong towww-databefore andafter the changes
are made to the lighttpd configuration file?

Question 10: What are the disadvantages and risks of running a web server and database on a local
IoT device?

Derek C. Schuurman 204

Exploring Computer Science with the Raspberry Pi

Lab #8: MQTT Security

To demonstrate some security issues, we will create an application that generates MQTT traffic and
then see if we can “snoop” the contents. The following Python program generates a simple periodic
MQTTmessage containing the text ‘hello world’ as follows:

Send periodic MQTT traffic.

import paho.mqtt.client as mqtt
import time
import os

Constants
BROKER = '' # broker hostname
PORT = 1883 # default MQTT port
QOS = 0
DELAY = 5.0
TOPIC = 'test/topic'

Callback when connecting to the MQTT broker
def on_connect(client, userdata, flags, rc):

if rc == 0:
print(f'Connected to {BROKER}')

else:
print(f'Connection to {BROKER} failed. Return code={rc}')
os._exit(1)

Setup MQTT client and callbacks
client = mqtt.Client()
client.on_connect = on_connect

Connect to MQTT broker
client.connect(BROKER, PORT, 60)
client.loop_start()

Continuously publish message
try:

while True:
print('Sending MQTT message')
client.publish(TOPIC, 'hello world')
time.sleep(DELAY)

except KeyboardInterrupt:
print('Done')
client.disconnect()

Be sure to set theBROKER constant to one of the publicMQTTbrokers such asmqtt.eclipseprojects.io
or test.mosquitto.org.

Run the program in a terminal on your Raspberry Pi as follows:

Derek C. Schuurman 205

http://mqtt.eclipseprojects.io/
http://test.mosquitto.org/

Exploring Computer Science with the Raspberry Pi

python3 mqtt-hello.py

Subscribe to theMQTT topic on another computer or laptop using the command line as follows (mod‑
ify the broker hostname and topic as necessary):

mosquitto_sub -d -h mqtt.eclipseprojects.io -p 1883 -t 'cs326/jcalvin'

Using ssh, open a second terminal on your Raspberry Pi and install the tcpdump utility. The tcp‑
dump tool will enable us to “snoop” the network packets. To install the tool, type:

sudo apt install tcpdump

Once the tool is installed, use it to monitor your MQTT traffic (once again, modify the hostname of
your MQTT broker if you are using a different one):

sudo tcpdump -XA host mqtt.eclipseprojects.io

Note that we are using command line options to display the packet contents in ASCII and to limit our
monitoring only to traffic exchanged with the MQTT broker. Each time an MQTT packet is sent, you
should see a network packet “dumped” to the console.

NOTE: Running tcpdump or similar tools on servers is normally not “polite” since it allows you
to view network traffic, some of which is “sent in the clear.” In this case, since the Raspberry Pi
is your server, and the traffic is your traffic, you may give yourself permission to do this. How‑
ever, in general, tcpdump is among a set of tools that needs to be used ethically and judiciously.
Remember the famousmovie line fromSpiderman’s uncle: with great power comes great respon‑
sibility.a

aAs cited by Peter Parker's uncle Ben in Spiderman.

Question 1: Answer the following questions:

a) Show the contents of one of the MQTT packets being sent between your Raspberry Pi and the
MQTT broker.

b) Are the contents of the MQTT packets visible i.e.. can you see the topic and message contents
inside the payload? What does this imply about security of the communications?

If the topic and message contents are visible, then such a system is vulnerable to snooping,
spoofing, or a “man‑in‑the‑middle attack.” As the number of connected devices grows and the
amount of data being transferred increases, security continues to be a crucial topic!

Next, let’s examinewhether thedataon thebroker is private and secure. Type the following command
to subscribe to all the topics on a public broker server. Let’s see what we can see:

Derek C. Schuurman 206

https://en.wikipedia.org/wiki/ASCII
https://youtu.be/guuYU74wU70?feature=shared

Exploring Computer Science with the Raspberry Pi

mosquitto_sub -h mqtt.eclipseprojects.io -p 1883 -t '#' -v

Question 2: Describewhat you seewhen you enter the command above. What does this imply about
data sent to open MQTT brokers? (1 point)

Thesesecurity issuescanbedealtwithusingauthenticationandencryption. Withoutencryption, your
packets are like postcards sent in the mail – nothing prevents the postman or anyone along the way
from reading your data!

The Transport Security Layer (TSL) provides a secure communication channel between a client and a
server. TSL provides a cryptographic protocol to create a secure connection between a client and the
broker. Insecure MQTT traffic is sent to port 1883 “in the clear” whereas port 8883 is used for secure
MQTT connections. MQTT brokers normally provide an X509 certificate (typically issued by a trusted
authority) that clients use to verify the identity of the server. Verifying the identity can help prevent
so‑called “man‑in‑the‑middle” attacks.

Note: using secure MQTT on embedded systems can present an issue since encryption incurs
overhead and requires more CPU resources and power. This can be a problem for resource‑
constrained or battery‑powered devices. However, the Raspberry Pi is more than capable of
handling encryption.

Authentication is a security mechanism which verifies whether a person or device is who they say
they are and can be used to grant access. The MQTT broker includes support for username and pass‑
word uthentication. Ideally, authentication should only be used over an encrypted connection to
ensure that the username and password itself are not sent in the clear.

Question 3:

a) Using theNISTNational Vulnerability Database, search for recentMQTTvulnerabilities, giveone
of the vulnerability identifiers and describe it briefly in your own words.

b) HowmanyMQTT vulnerabilitieswere there reported in the database for the current year (based
on published date)?

Troubleshooting Tips for the Raspberry Pi

The Raspberry Pi includes a green activity LED that can aid in troubleshooting. Normally this LED
flashes to indicate it is reading from the SD card. However, if an error is encountered during booting,
the LED will flash an error code. The “blink codes” for the Raspberry Pi 4 comprise a series of long

Derek C. Schuurman 207

https://en.wikipedia.org/wiki/X.509
https://nvd.nist.gov/vuln/search

Exploring Computer Science with the Raspberry Pi

and short flashes as summarized below. Note that the blink codes for the Raspberry Pi 4 and 5 are
different than for prior versions of the Raspberry Pi.

Long flashes Short Flashes Status

0 3 Generic failure to boot

0 4 start*.elf not found

0 7 Kernel image not found

0 8 SDRAM failure

0 9 Insufficient SDRAM

0 10 In HALT state

2 1 Partition not FAT

2 2 Failed to read from partition

2 3 Extended partition not FAT

2 4 File signature/hashmismatch

4 4 Unsupported board type

4 5 Fatal firmware error

4 6 Power failure type A

4 7 Power failure type B

Derek C. Schuurman 208

Exploring Computer Science with the Raspberry Pi

Closing Note

We opened by citing the remark by the respected computer scientists Edsgar Dijkstra that “computer
science is no more about computers than astronomy is about telescopes.” While this is true, it is
certainly enhanced through widespread access to cost‑effective, nifty, and powerful computing plat‑
forms designed for learning and exploring. The Raspberry Pi provides one such platform, and this
guide provides ample evidence to the sweeping topics in computer science that one can explore us‑
ing this modest platform. Kudos to the folks at the Raspberry Pi Foundation!

Derek C. Schuurman 209

https://www.raspberrypi.org/about/

	Introduction
	The Raspberry Pi
	Initial Setup of the Raspberry Pi
	Getting Started with the Command Line
	The Shell
	Shell commands

	Text Editors
	Nano
	Emacs
	Vim

	Configuring the Raspberry Pi OS
	Connecting Remotely to the Raspberry Pi
	Connecting using a USB-to-TTL serial cable
	Connecting over Ethernet or Wi-Fi
	Raspberry Pi Connect

	Remote Editing with Vscode
	Proper Shutdown

	Introduction to Programming Languages
	The Python Programming Language
	Setting up a Python Virtual Environment
	Using JupyterLab Notebooks
	Python Drill Exercises
	Compiling and Running a C/C++ Program
	Using a C Debugger
	Library Documentation
	Other Tools for C and C++

	Compiling and Running Java Programs
	Other Programming Languages
	Comparing Runtime Efficiency of Different Programming Languages
	Measuring execution time

	Computer Organization and Assembly Language
	Early Computers
	The First Electronic Computers

	Modern Computer Organization
	The Processor
	The Digital Logic Level
	The Microarchitecture Level
	The Instruction Set Architecture (ISA)
	The Assembly Language Level

	Memory
	Volatile Memory
	Non-Volatile Memory

	Inputs and Outputs (I/O)

	The Linux Operating System
	Introduction
	Process Management
	Tools for Managing Processes
	Example Program to fork a new process

	Parallel Computation
	Multithreaded programming
	Multiprocessing
	Parallel and Distributed Computing with the Raspberry Pi

	File and Memory Management
	Memory Management
	File Management

	Controlling Inputs and Outputs
	Software I/O Strategies
	The General Purpose Input and Output (GPIO) Pins
	Reading and Setting GPIO Pins

	Other OS Support Functions
	Logfiles
	Updating the Operating System
	Securing your Raspberry Pi
	Setting up a Print Server

	Compiling the Linux Kernel

	Networking
	Networking Utilities
	ping
	ifconfig
	traceroute
	mtr
	dig
	wget
	curl
	telnet
	nmap
	tcpdump
	Wireshark
	Drill Exercises

	The Web
	Lighttpd
	Nginx

	Java Network Programming

	Databases
	Introduction to SQL Databases and the Raspberry Pi
	Using SQLite
	Using MySQL
	Using PostgreSQL

	Cloud Databases
	Vector Databases

	Embedded Systems and the Internet of Things
	Reading GPIO inputs
	GPIO Input Events

	Setting GPIO outputs
	Controlling GPIO outputs in a Program
	Pulse Width Modulation (PWM) Outputs

	GPIO Serial Communications
	Using I2C
	The SPI Interface

	Introduction to MQTT for IoT
	Sending MQTT messages from the command line
	Controlling an LED using Python and MQTT
	Using MQTT to control Zigbee Devices

	Camera Sensors
	OpenCV
	AprilTags
	Computer Vision at the Edge

	Exploring Artificial Intelligence
	Introduction
	Hardware and Software Support for AI
	SciKit Learn
	Linear Discriminate Analysis (LDA)
	Principal Component Analysis (PCA)
	Support Vector Machines (SVM)
	SVM Image Classification

	LiteRT
	Large Language Models (LLMs)

	Other Tools for Engineers and Computer Scientists
	Document Preparation
	LaTeX
	pandoc
	PDF Utilities

	File Utilities
	diff
	grep
	hexdump
	readelf

	Software Version Control Systems
	Using Git and GitHub
	Mercurial Version Control

	Mathematical Tools
	SageMath
	Octave
	gnuplot

	Circuit Simulation with NGSpice
	Defining a circuit file for simulation
	Example Circuit Simulation
	Power Electronics Circuit Simulation

	Ham Radio Applications for the Raspberry Pi
	WSJT
	fldigi and flrig
	TQSL

	Ethics and Computer Technology
	Design norms
	A Brief Normative Analysis of the Raspberry Pi

	A Collection of Lab Exercises
	Some Lab Safety Guidelines
	Lab #1: Getting Started with the Raspberry Pi
	Lab #2: Editing and Running Programs on the Raspberry Pi
	Lab #3: Using the GPIO Port
	Lab #4: Using the PWM output
	Lab #5: Scheduling and Kernel latency
	Lab 6: M2M Communications with MQTT
	Lab #7: I2C with Local Web Server and Local Database
	Lab #8: MQTT Security
	Troubleshooting Tips for the Raspberry Pi

	Closing Note

