
Curve Sketching Practice

With a partner or two and without the use of a graphing calculator, attempt to sketch the graphs
of the following functions. Pertinent aspects of the graph to include (include as many as you can):

• asymptotes (vertical/horizontal)

• domain

• local extrema/regions of increase/decrease

• points of inflection/concavity

• x-intercepts(?)

1. f(x) = x4 − 6x2

2. f(x) = (x2 − 1)3

3. f(x) = x
√

x2 + 1

4. f(x) =
x

(x− 1)2

Solutions

1
The zeros (x-intercepts) of f :

x4 − 6x2 = 0 ⇒ x2(x2 − 6) = 0 ⇒ x = 0, ±
√

6.

The zeros of f ′(x) = 4x3 − 12x:

4x3 − 12x = 0 ⇒ 4x(x2 − 3) = 0 ⇒ x = 0, ±
√

3.

f ′ changes sign at each of these numbers since f ′(−2) < 0, f ′(−1) > 0, f ′(1) < 0, and f ′(2) > 0.
Thus, f has relative minimums f(−

√
3) = −9 and f(

√
3) = −9 and a relative maximum f(0) = 0.

The zeros of f ′′(x) = 12x2 − 12:

12x2 − 12 = 0 ⇒ 12(x2 − 1) = 0 ⇒ x = −1, 1.

f ′′ changes sign as it passes each of these numbers, since f ′′(−2) > 0, f ′′(0) < 0 and f ′′(2) > 0, so f
has points of inflection (−1,−5) (where the graph changes from being concave upward to concave
downward) and (1,−5) (concave down to concave up).
2
The zeros of f :

(x2 − 1)3 = 0 ⇒ [(x + 1)(x− 1)]3 = 0 ⇒ x = −1, 1.
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The zeros of f ′(x) = 6x(x2 − 1)2:

6x(x2 − 1)2 = 0 ⇒ 6x(x + 1)2(x− 1)2 = 0 ⇒ x = −1, 0, 1.

Since f ′(−2) < 0, f ′(−0.5) < 0, f ′(0.5) > 0 and f ′(2) > 0, f has a relative minimum f(0) = −1.
The product rule may be used to find f ′′:

f ′′(x) = 6(x2 − 1)2 + 24x2(x2 − 1) = 6(x2 − 1)[(x2 − 1) + 4x2] = 6(x2 − 1)(5x2 − 1).

These algebraic simplifications were carried out to factor f ′′, so that its zeros x = −1,−1/
√

5, 1/
√

5,
and 1 are more easily found. Since f ′′(−2) > 0, f ′′(0.5) < 0, f ′′(0) > 0, f ′′(0.5) < 0 and f ′′(−2) > 0,
f has points of inflection at (−1, 0) (where, incidentally, the tangent line is horizontal by the fact that
f ′(−1) = 0 and the graph goes from concave upward to concave downward), at (−1/

√
5,−64/125),

at (1/
√

5,−64/125) and at (1, 0).

Here are graphs for the functions in problems 1 and 2 sketched using the information we gained
above:
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The zeros of f occur only when the numerator is zero – namely, at x = 0. Finding the derivative of
f is a matter for the product rule. We have

f ′(x) = (x2 + 1)1/2 + x2(x2 + 1)−1/2 =
(x2 + 1) + x2

√
x2 + 1

=
2x2 + 1√
x2 + 1

.

Again, f ′ is zero only when its numerator is zero, and since the equation 2x2 + 1 = 0 has no real
solutions, f is not going to have any relative extrema. Turning to the question of concavity we may
apply the quotient rule to f ′ in the form in which it appears above, but I choose here instead to
write f ′(x) = (2x2 + 1)(x2 + 1)−1/2 and apply the product rule to get f ′′:

f ′′(x) = 4x(x2 + 1)−1/2 − x(2x2 + 1)(x2 + 1)−3/2

=
4x√

x2 + 1
− 2x3 + x

(x2 + 1)
√

x2 + 1
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=
4x(x2 + 1)− 2x3 − x

(x2 + 1)
√

x2 + 1

=
2x3 + 3x

(x2 + 1)
√

x2 + 1
.

As with any fractional expression, f ′′ may be zero only when its numerator is zero, so we solve

2x2 + 3x = 0 ⇒ x(2x + 3) = 0 ⇒ x = 0, −3

2
.

Since f ′′(−2) < 0, f ′′(−1) < 0 and f ′′(1) > 0 we know there is one inflection point at (0, 0), with
the concavity of f changing there from downward to upward.
4
f has just one zero at x = 0. Writing f in the equivalent form f(x) = x(x − 1)−2, we get the
derivative using the product rule (of course, the quotient rule would also have been an option):

f ′(x) = (x− 1)−2 − 2x(x− 1)−3 =
1

(x− 1)2
− 2x

(x− 1)3
=

(x− 1)− 2x

(x− 1)3
=
−x− 1

(x− 1)3
.

This shows that f ′ has only one zero at x = −1. Like usual we should check the sign of f ′ on both
sides of this number. What is different about this particular example is that if we check the sign
of, say, f ′(0), we may not presume that this is the sign of f ′ for all numbers x > −1, rather this
is true just for those numbers −1 < x < 1. x = 1 is a number not actually in the domain of f —
actually the site of a vertical asymptote for this function — and we have to check the sign of f ′ for
numbers x > 1 separately. Since f ′(−2) < 0, f ′(0) > 0 and f ′(2) < 0 we have the f decreases on
−∞ < x < −1, reaching a local minimum f(−1) = −1

4
, and increases on −1 < x < 1 (with the

values of f approaching +∞), and decreasing (coming down from +∞) for 1 < x < ∞. We now
glean what we can from the second derivative. Writing f ′(x) in the equivalent form (−x−1)(x−1)−3,
we get

f ′′(x) = −(x− 1)−3 − 3(−x− 1)(x− 1)−4

=
−1

(x− 1)3
+

3x + 3

(x− 1)4

=
−(x− 1) + 3x + 3

(x− 1)4

=
2x + 4

(x− 1)4
.

We determine possible points of inflection first by determining where the numerator of f ′′ is zero.
The only solution to 2x + 4 = 0 is x = −2. We note that f ′′(−3) < 0, f ′′(0) > 0, f ′′(2) > 0 (we
check numbers from the two intervals −2 < x < 1 and 1 < x < +∞ separately because of the break
in the domain at x = 1). Thus f is concave down on the interval −∞ < x < −2, has a point of
inflection at (−2,−2/9), and is concave up on each of the intervals −2 < x < 1 and 1 < x < +∞.

Here are graphs sketched for problems 3 and 4:
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