Curve Sketching Practice

With a partner or two and without the use of a graphing calculator, attempt to sketch the graphs of the following functions. Pertinent aspects of the graph to include (include as many as you can):

- asymptotes (vertical/horizontal)
- domain
- local extrema/regions of increase/decrease
- points of inflection/concavity
- x-intercepts(?)

1. $f(x)=x^{4}-6 x^{2}$
2. $f(x)=\left(x^{2}-1\right)^{3}$
3. $f(x)=x \sqrt{x^{2}+1}$
4. $f(x)=\frac{x}{(x-1)^{2}}$

Solutions

1
The zeros (x-intercepts) of f :

$$
x^{4}-6 x^{2}=0 \Rightarrow x^{2}\left(x^{2}-6\right)=0 \quad \Rightarrow \quad x=0, \pm \sqrt{6} .
$$

The zeros of $f^{\prime}(x)=4 x^{3}-12 x$:

$$
4 x^{3}-12 x=0 \quad \Rightarrow \quad 4 x\left(x^{2}-3\right)=0 \quad \Rightarrow \quad x=0, \pm \sqrt{3}
$$

f^{\prime} changes sign at each of these numbers since $f^{\prime}(-2)<0, f^{\prime}(-1)>0, f^{\prime}(1)<0$, and $f^{\prime}(2)>0$. Thus, f has relative minimums $f(-\sqrt{3})=-9$ and $f(\sqrt{3})=-9$ and a relative maximum $f(0)=0$. The zeros of $f^{\prime \prime}(x)=12 x^{2}-12$:

$$
12 x^{2}-12=0 \quad \Rightarrow \quad 12\left(x^{2}-1\right)=0 \quad \Rightarrow \quad x=-1,1
$$

$f^{\prime \prime}$ changes sign as it passes each of these numbers, since $f^{\prime \prime}(-2)>0, f^{\prime \prime}(0)<0$ and $f^{\prime \prime}(2)>0$, so f has points of inflection $(-1,-5)$ (where the graph changes from being concave upward to concave downward) and $(1,-5)$ (concave down to concave up).
2
The zeros of f :

$$
\left(x^{2}-1\right)^{3}=0 \quad \Rightarrow \quad[(x+1)(x-1)]^{3}=0 \quad \Rightarrow \quad x=-1,1
$$

The zeros of $f^{\prime}(x)=6 x\left(x^{2}-1\right)^{2}$:

$$
6 x\left(x^{2}-1\right)^{2}=0 \quad \Rightarrow \quad 6 x(x+1)^{2}(x-1)^{2}=0 \quad \Rightarrow \quad x=-1,0,1
$$

Since $f^{\prime}(-2)<0, f^{\prime}(-0.5)<0, f^{\prime}(0.5)>0$ and $f^{\prime}(2)>0, f$ has a relative minimum $f(0)=-1$. The product rule may be used to find $f^{\prime \prime}$:

$$
f^{\prime \prime}(x)=6\left(x^{2}-1\right)^{2}+24 x^{2}\left(x^{2}-1\right)=6\left(x^{2}-1\right)\left[\left(x^{2}-1\right)+4 x^{2}\right]=6\left(x^{2}-1\right)\left(5 x^{2}-1\right) .
$$

These algebraic simplifications were carried out to factor $f^{\prime \prime}$, so that its zeros $x=-1,-1 / \sqrt{5}, 1 / \sqrt{5}$, and 1 are more easily found. Since $f^{\prime \prime}(-2)>0, f^{\prime \prime}(0.5)<0, f^{\prime \prime}(0)>0, f^{\prime \prime}(0.5)<0$ and $f^{\prime \prime}(-2)>0$, f has points of inflection at $(-1,0)$ (where, incidentally, the tangent line is horizontal by the fact that $f^{\prime}(-1)=0$ and the graph goes from concave upward to concave downward), at $(-1 / \sqrt{5},-64 / 125)$, at $(1 / \sqrt{5},-64 / 125)$ and at $(1,0)$.

Here are graphs for the functions in problems 1 and 2 sketched using the information we gained above:

3
The zeros of f occur only when the numerator is zero - namely, at $x=0$. Finding the derivative of f is a matter for the product rule. We have

$$
f^{\prime}(x)=\left(x^{2}+1\right)^{1 / 2}+x^{2}\left(x^{2}+1\right)^{-1 / 2}=\frac{\left(x^{2}+1\right)+x^{2}}{\sqrt{x^{2}+1}}=\frac{2 x^{2}+1}{\sqrt{x^{2}+1}} .
$$

Again, f^{\prime} is zero only when its numerator is zero, and since the equation $2 x^{2}+1=0$ has no real solutions, f is not going to have any relative extrema. Turning to the question of concavity we may apply the quotient rule to f^{\prime} in the form in which it appears above, but I choose here instead to write $f^{\prime}(x)=\left(2 x^{2}+1\right)\left(x^{2}+1\right)^{-1 / 2}$ and apply the product rule to get $f^{\prime \prime}$:

$$
\begin{aligned}
f^{\prime \prime}(x) & =4 x\left(x^{2}+1\right)^{-1 / 2}-x\left(2 x^{2}+1\right)\left(x^{2}+1\right)^{-3 / 2} \\
& =\frac{4 x}{\sqrt{x^{2}+1}}-\frac{2 x^{3}+x}{\left(x^{2}+1\right) \sqrt{x^{2}+1}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{4 x\left(x^{2}+1\right)-2 x^{3}-x}{\left(x^{2}+1\right) \sqrt{x^{2}+1}} \\
& =\frac{2 x^{3}+3 x}{\left(x^{2}+1\right) \sqrt{x^{2}+1}} .
\end{aligned}
$$

As with any fractional expression, $f^{\prime \prime}$ may be zero only when its numerator is zero, so we solve

$$
2 x^{2}+3 x=0 \quad \Rightarrow \quad x(2 x+3)=0 \quad \Rightarrow \quad x=0,-\frac{3}{2}
$$

Since $f^{\prime \prime}(-2)<0, f^{\prime \prime}(-1)<0$ and $f^{\prime \prime}(1)>0$ we know there is one inflection point at $(0,0)$, with the concavity of f changing there from downward to upward.

4
f has just one zero at $x=0$. Writing f in the equivalent form $f(x)=x(x-1)^{-2}$, we get the derivative using the product rule (of course, the quotient rule would also have been an option):

$$
f^{\prime}(x)=(x-1)^{-2}-2 x(x-1)^{-3}=\frac{1}{(x-1)^{2}}-\frac{2 x}{(x-1)^{3}}=\frac{(x-1)-2 x}{(x-1)^{3}}=\frac{-x-1}{(x-1)^{3}} .
$$

This shows that f^{\prime} has only one zero at $x=-1$. Like usual we should check the sign of f^{\prime} on both sides of this number. What is different about this particular example is that if we check the sign of, say, $f^{\prime}(0)$, we may not presume that this is the sign of f^{\prime} for all numbers $x>-1$, rather this is true just for those numbers $-1<x<1 . x=1$ is a number not actually in the domain of $f-$ actually the site of a vertical asymptote for this function - and we have to check the sign of f^{\prime} for numbers $x>1$ separately. Since $f^{\prime}(-2)<0, f^{\prime}(0)>0$ and $f^{\prime}(2)<0$ we have the f decreases on $-\infty<x<-1$, reaching a local minimum $f(-1)=-\frac{1}{4}$, and increases on $-1<x<1$ (with the values of f approaching $+\infty$), and decreasing (coming down from $+\infty$) for $1<x<\infty$. We now glean what we can from the second derivative. Writing $f^{\prime}(x)$ in the equivalent form $(-x-1)(x-1)^{-3}$, we get

$$
\begin{aligned}
f^{\prime \prime}(x) & =-(x-1)^{-3}-3(-x-1)(x-1)^{-4} \\
& =\frac{-1}{(x-1)^{3}}+\frac{3 x+3}{(x-1)^{4}} \\
& =\frac{-(x-1)+3 x+3}{(x-1)^{4}} \\
& =\frac{2 x+4}{(x-1)^{4}}
\end{aligned}
$$

We determine possible points of inflection first by determining where the numerator of $f^{\prime \prime}$ is zero. The only solution to $2 x+4=0$ is $x=-2$. We note that $f^{\prime \prime}(-3)<0, f^{\prime \prime}(0)>0, f^{\prime \prime}(2)>0$ (we check numbers from the two intervals $-2<x<1$ and $1<x<+\infty$ separately because of the break in the domain at $x=1$). Thus f is concave down on the interval $-\infty<x<-2$, has a point of inflection at $(-2,-2 / 9)$, and is concave up on each of the intervals $-2<x<1$ and $1<x<+\infty$. Here are graphs sketched for problems 3 and 4:

