MATH 162: Calculus II

Framework for Wed., Feb. 28
Limits and Continuity

Today's Goal: To understand the meaning of limits and continuity of functions of 2 and 3 variables.

Geometry of the Domain Space

Definition: (Distance in $\left.\mathbb{R}^{3}\right)$: Suppose that $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ are points in \mathbb{R}^{3}. The distance between these two points is

$$
\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}} .
$$

If our two points have the same z-value (for instance, if they both lie in the $x y$-plane), then the distance between them is just

$$
\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} .
$$

We employ these definitions for distance in $\mathbb{R}^{2}, \mathbb{R}^{3}$ to define circles, disks, spheres and balls.
Definition: A circle in \mathbb{R}^{2} centered at (a, b) with radius r is the set of points (x, y) satisfying

$$
(x-a)^{2}+(y-b)^{2}=r^{2} .
$$

Given such a circle C, the set of all points on or inside C is a closed disk. The set of points inside but not on C is an open disk.

Definition: A sphere in \mathbb{R}^{3} centered at (a, b, c) with radius r is the set of points (x, y, z) satisfying

$$
(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2} .
$$

The inside of a sphere is called a ball, and can be closed or open depending on whether the (whole) sphere is included.

Open intervals in \mathbb{R} are sets of the form $a<x<b$ (also written using interval notation $(a, b))$, where neither endpoint a, b is included in the set. One observation about such sets is that, if you take any $x \in(a, b)$, there is a value of $r>0$, perhaps quite small, for which the interval $(x-r, x+r)$ is wholly contained inside (a, b). We build on that idea when defining various kinds of subsets of \mathbb{R}^{2}.

Definition: Let R be a region of the $x y$-plane and $\left(x_{0}, y_{0}\right)$ a point (perhaps in R, perhaps not). We call $\left(x_{0}, y_{0}\right)$ an interior point of R if there is an open disk of positive radius centered at $\left(x_{0}, y_{0}\right)$ such that every point in this disk lies inside R.

We call $\left(x_{0}, y_{0}\right)$ a boundary point of R if every disk with positive radius centered at $\left(x_{0}, y_{0}\right)$ contains both a point that is in R and a point that isn't in R.
The region R is said to be open if all points in R are interior points of R.
The region R is said to be closed if all boundary points of R are in R.
The region R is said to be bounded if it lies entirely inside a disk of finite radius.

Examples:

1. An open disk is open. A closed disk is closed. For both, the boundary points are those found on the enclosing circle.
2. The upper half-plane R consisting of points (x, y) for which $y>0$ is an open, unbounded set. The boundary points of R are precisely those points found along the x-axis, none of which are contained in R.
3. If $y=f(x)$ is a continuous function on the interval $a \leq x \leq b$, then the graph of f is a closed, bounded set made up entirely of boundary points.
4. The set of points (x, y) satisfying $x \geq 0, y \geq 0$ and $y<x+1$ is bounded, but neither open nor closed.
5. The only nonempty region of the plane which is both open and closed is the entire plane \mathbb{R}^{2}.

Limits and Continuity

The idea behind the statement

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L
$$

for a function f of two variables is that you can make the value of $f(x, y)$ as close to L as you like by focusing only on (x, y) in the domain of f which are inside an open disk centered at $\left(x_{0}, y_{0}\right)$ of some positive radius. The official definition follows.

Definition: The limit of f as (x, y) approaches $\left(x_{0}, y_{0}\right)$ is L if for every $\epsilon>0$ there is a corresponding $\delta>0$ such that, for all (x, y) in $\operatorname{dom}(f)$,

$$
\text { if } \quad 0<\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta \quad \text { then } \quad|f(x, y)-L|<\epsilon .
$$

Remarks:

1. All the limit laws of functions of a single variable - those stated in Section 2.2-have analogs for functions of 2 variables. For instance, the analog to Rule 5 on p. 65 goes like this:

Theorem: Suppose

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L \quad \text { and } \quad \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} g(x, y)=M .
$$

(That is, suppose both these limits exist, and call them L, M respectively.) If $M \neq 0$, then

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{f(x, y)}{g(x, y)}=\frac{L}{M}
$$

2. We recall that, for a function f of a single variable and a point x_{0} interior to the domain of f, the statement $\lim _{x \rightarrow x_{0}} f(x)=L$ requires the values of f to approach L as the x-values approach x_{0} from both the left and the right. The requirement at interior points $\left(x_{0}, y_{0}\right)$ to the domain of a function f of 2 variables is even more strict. Any path of (x, y)-values within the domain of f traversed en route to $\left(x_{0}, y_{0}\right)$ should produce function values which approach L.

Example: The limits $\lim _{(x, y) \rightarrow(0,0)} \frac{4 x y}{x^{2}+y^{2}}$ and $\lim _{(x, y) \rightarrow(0,0)} \frac{4 x y^{2}}{x^{2}+y^{4}}$ do not exist.
3. One defines continuity for functions of two variables in an identical fashion as for functions of a single variable.

Definition: Suppose $\left(x_{0}, y_{0}\right)$ is in the domain of f. We say that f is continuous at $\left(x_{0}, y_{0}\right)$ if

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=f\left(x_{0}, y_{0}\right)
$$

(i.e., if this limit exists and has the same value as $f\left(x_{0}, y_{0}\right)$). We say f is continuous (or f is continuous throughout its domain) if f is continuous at each point in its domain.

Example: The functions $f(x, y):=\frac{4 x y}{x^{2}+y^{2}}$ and $g(x, y):=\frac{4 x y^{2}}{x^{2}+y^{4}}$ are continuous at all points (x, y) except $(0,0)$.
4. The notions of distance, open and closed balls, boundary point, interior point, open and closed sets, limits and continuity may all be generalized to functions of n variables, where n is any integer greater than 1 .

