Cramer's Rule

Cramer's rule provides a method for solving a system of linear algebraic equations for which the associated matrix problem $\mathbf{A x}=\mathbf{b}$ has a coefficient matrix which is nonsingular. It is of no use if this criterion is not met and, considering the effectiveness of algorithms we have learned already for solving such a system (inversion of the matrix A, and Gaussian elimination, specifically), it is not clear why we need yet another method. Nevertheless, it is a tool (some) people use, and should be recognized/understood by you when you run across it. We will describe the method, but not explain why it works, as this would require a better understanding of determinants than our time affords.

So, let us assume the n-by- n matrix \mathbf{A} is nonsingular, that \mathbf{b} is a known vector in \mathbb{R}^{n}, and that we wish to solve the equation $\mathbf{A x}=\mathbf{b}$ for an unknown (unique) vector $\mathbf{x} \in \mathbb{R}^{n}$. Cramer's rule requires the construction of matrices $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{n}$, where each $\mathbf{A}_{j}, 1 \leqslant j \leqslant n$ is built from the original \mathbf{A} and \mathbf{b}. These are constructed as follows: the $j^{\text {th }}$ column of \mathbf{A} is replaced by \mathbf{b} to form \mathbf{A}_{j}.

Example 1: Construction of $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}$ when \mathbf{A} is 3-by-3
Suppose $\mathbf{A}=\left(a_{i j}\right)$ is a 3-by-3 matrix, and $\mathbf{b}=\left(b_{i}\right)$, then

$$
\mathbf{A}_{1}=\left(\begin{array}{lll}
b_{1} & a_{12} & a_{13} \\
b_{2} & a_{22} & a_{23} \\
b_{3} & a_{32} & a_{33}
\end{array}\right), \quad \mathbf{A}_{2}=\left(\begin{array}{lll}
a_{11} & b_{1} & a_{13} \\
a_{21} & b_{2} & a_{23} \\
a_{31} & b_{3} & a_{33}
\end{array}\right), \quad \text { and } \quad \mathbf{A}_{3}=\left(\begin{array}{lll}
a_{11} & a_{12} & b_{1} \\
a_{21} & a_{22} & b_{2} \\
a_{31} & a_{32} & b_{3}
\end{array}\right) .
$$

Armed with these $\mathbf{A}_{j}, 1 \leqslant j \leqslant n$, the solution vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ has its $j^{\text {th }}$ component given by

$$
\begin{equation*}
x_{j}=\frac{\left|\mathbf{A}_{j}\right|}{|\mathbf{A}|}, \quad j=1,2, \ldots, n \tag{1}
\end{equation*}
$$

It should be clear from this formula why it is necessary that \mathbf{A} be nonsingular.

Example 2:

Use Cramer's rule to solve the system of equations

$$
\begin{aligned}
x+3 y+z-w & =-9 \\
2 x+y-3 z+2 w & =51 \\
x+4 y+2 w & =31 \\
-x+y+z-3 w & =-43
\end{aligned}
$$

Here, \mathbf{A} and \mathbf{b} are given by

$$
\mathbf{A}=\left(\begin{array}{cccc}
1 & 3 & 1 & -1 \\
2 & 1 & -3 & 2 \\
1 & 4 & 0 & 2 \\
-1 & 1 & 1 & -3
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
-9 \\
51 \\
31 \\
-43
\end{array}\right), \quad \text { so } \quad|\mathbf{A}|=\left|\begin{array}{cccc}
1 & 3 & 1 & -1 \\
2 & 1 & -3 & 2 \\
1 & 4 & 0 & 2 \\
-1 & 1 & 1 & -3
\end{array}\right|=-46
$$

Thus,

$$
\begin{aligned}
& x=\frac{\left|\mathbf{A}_{1}\right|}{|\mathbf{A}|}=\frac{1}{|\mathbf{A}|}\left|\begin{array}{cccc}
-9 & 3 & 1 & -1 \\
51 & 1 & -3 & 2 \\
31 & 4 & 0 & 2 \\
-43 & 1 & 1 & -3
\end{array}\right|=\frac{-230}{-46}=5 \\
& y=\frac{\left|\mathbf{A}_{2}\right|}{|\mathbf{A}|}=\frac{1}{|\mathbf{A}|}\left|\begin{array}{cccc}
1 & -9 & 1 & -1 \\
2 & 51 & -3 & 2 \\
1 & 31 & 0 & 2 \\
-1 & -43 & 1 & -3
\end{array}\right|=\frac{-46}{-46}=1 \\
& z=\frac{\left|\mathbf{A}_{3}\right|}{|\mathbf{A}|}=\frac{1}{|\mathbf{A}|}\left|\begin{array}{cccc}
1 & 4 & 31 & 2 \\
2 & 1 & 51 & 2 \\
-1 & 1 & -43 & -3
\end{array}\right|=\frac{276}{-46}=-6, \\
& w=\frac{\left|\mathbf{A}_{4}\right|}{|\mathbf{A}|}=\frac{1}{|\mathbf{A}|}\left|\begin{array}{cccc}
1 & 4 & -9 & -1 \\
2 & 1 & -3 & 51 \\
1 & 4 & 3 & 31 \\
-1 & 1 & 1 & -43
\end{array}\right|=\frac{-506}{-46}=11
\end{aligned}
$$

yielding the solution $\mathbf{x}=(x, y, z, w)=(5,1,-6,11)$.

