
MATH 231, Worksheet
Finding inverse Laplace transforms Solutions

1. Using partial fraction expansion, we have
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Multiplying through by the lowest commond denominator s2(s2 + 4), we get

1 = As(s2 + 4) + B(s2 + 4) + s2(Cs + D), (1)

an equation which must hold for all s. In particular, at s = 0 we get
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Thus, equation (1) becomes
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Equating coefficients for the various powers of s on both sides, we have
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which means
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Thus, f(t) = 1
4 t − 1

8 sin 2t.

2. The denominator of this F does not factor (unless we use its complex roots). Instead, we
complete the square on the bottom.
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Thus,
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3. The only way this F differs from the one in Problem 2 is in the presence of e−s. Using what
we already know about the inverse Laplace transform of s/(s2 + 6s + 11) from that problem,
we have
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4. While the denominator in the second term does factor (making partial fractions possible),
here I use completing the square again. To be specific,
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5. The relationship between this F and the one from Problem 4 is similar to that between the
ones given in Problems 3 and 2. Using the answer from Problem 4, we have
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6. Here
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Incidentally, using the trigonometric identity

sin(A − B) = sinA cos B − cos A sinB,

we get

f(t) =
1

3
uπ/2(t)

[

sin 3t cos
3π

2
− cos 3t sin

3π

2

]

=
1

3
uπ/2(t) cos 3t.


