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Positive Definite Matrices

A quadratic form qpxq (in the n real variables x “ px1, . . . , xnq P Rn) is said to be

• positive definite if qpxq ° 0 for each x , 0 in Rn.

• positive semidefinite if qpxq • 0 for each x , 0 in Rn.

• negative definite if qpxq † 0 for each x , 0 in Rn.

• negative semidefinite if qpxq § 0 for each x , 0 in Rn.

• indefinite if there exist u, v P Rn such that qpuq ° 0 and qpvq † 0.

To any (real) quadratic form q there is an associated real symmetric matrix A for which qpxq “
xx,Axy “ xAx, xy “ x

T
Ax. We apply the same words to characterize this symmetric matrix, calling

it positive/negative (semi)definite or indefinite depending on which of the above conditions hold
for the quadratic form qpxq “ xx,Axy.

Note that, while it would seem, in classifying a quadratic form q, one must investigate the behavior
of qpxq over all x P Rn, it is enough to focus on those x P Rn with unit length }x} “ 1. This is
because, for x , 0,

qpxq “ x
T
Ax “ }x}2

ˆ
x

}x}

˙T

A

ˆ
x

}x}

˙
“ }x}2

qpuq,

where u “ x{}x} is a unit vector. This means q is positive definite, if and only if qpuq ° 0 for every
unit vector u P Rn, positive semidefinite, if and only if qpuq • 0 for every unit vector u P Rn, and
so on.

Now, because the matrix A associated to q is symmetric, the Spectral Theorem says there exists an
orthonormal basis tq1, . . . ,qnu ofRn consisting of eigenvectors of A. Without loss of generality, we
may assume the vectors of this basis have been indexed so that the corresponding (real) eigenvalues
are ordered from smallest to largest

�1 § �2 § ¨ ¨ ¨ § �n.

The orthogonal matrix S whose j
th column is q j diagonalizes A:

A “ S⇤S
T, with ⇤ “

»

————–

�1 0 ¨ ¨ ¨ 0
0 �2 ¨ ¨ ¨ 0
...
...
. . .

...

0 0 ¨ ¨ ¨ �n

fi

����fl
.

Thus, for any vector x P Rn with }x} “ 1,

qpxq “ xx,Axy “
@

x,S⇤S
T
x

D
“

@
S

T
x,⇤S

T
x
D

“
@
⇤S

T
x,ST

x
D

“ x⇤y,yy “
nÿ

j“1
� jy

2
j
,
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where y “ S
T
x, and }y} “ 1, as well (since S

T is orthogonal). From this, we deduce several facts:

Fact 1: For a real symmetric matrix A with eigenvalues �1 § �2 § ¨ ¨ ¨ § �n,

(i) �1 § xx,Axy § �n, for each unit vector x (i.e., }x} “ 1).

(ii) Corresponding to each eigenvalue � j of A, there is a unit eigenvector x j (that is,
}x j} “ 1 with Ax j “ � jx j), and for this x j,

qpx jq “
@

x j,Ax j

D
“

@
� jx j, x j

D
“ � j

@
x j, x j

D
“ � j.

(iii) A is positive semidefinite if and only if each eigenvalue� j • 0, and positive definite i↵
every eigenvalue is positive. Similarly, A is negative semidefinite i↵ every eigenvalue
� j § 0, and negative definite i↵ they are all negative.

(iv) A is indefinite if and only if �1 † 0 † �n.

The role of definiteness in optimization

Earlier, we said a real-valued function f of multiple real variables x “ px1, . . . , xnq which is smooth
about the point a “ pa1, . . . , anq is, for small enough }h}, well approximated by the second-degree
Taylor polynomial

f pa ` hq « f paq ` r f paq ¨ h `
B

h,
1
2

H f paqh

F
. (1)

As with the functions of a single variable studied in Calculus I, a necessary condition for di↵eren-
tiable f to have an extremum at a is that a be a critical point, a site where the 1st derivative is zero.
A di↵erentiable function f pxq has many first partial derivatives, and for f to have an extremum,
they must all be zero simultaneously. This means that a is a critical point when r f paq “ 0. Thus,
in the neighborhood of a critical point a, (1) reduces to

f pa ` hq « f paq `
B

h,
1
2

H f paqh

F
(2)

for small }h}. We have that
@

h, 1
2 H f paqh

D
is a quadratic form. If it is the case that

@
h,H f paqh

D

is positive definite, then the thing added to f paq on the right-hand side of (2) is positive for any
nonzero vector h representing the magnitude and direction we have ”strayed” from a; this, in turn,
means that f paq is a local minimum of f . By similar reasoning, f paq is a local maximum if H f paq is
a negative definite matrix. If H f paq is indefinite, then f paq is neither a local max nor a local min; in
that case, x “ a is called a saddle point. We summarize these findings:
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Theorem 1 (2nd Derivative Test for Functions of Multiple Variables): Suppose f : Rn Ñ
R is a smooth function in an open neighborhood of a P Rn. If a is a critical point, then

(i) f paq is a local minimum if H f paq is positive definite.

(ii) f paq is a local maximum if H f paq is negative definite.

(iii) f paq is a saddle point if H f paq is indefinite.

Note that we have not stated a conclusion if H f paq is only positive or negative semidefinite.

We must be careful not to make too much of the approximation (2) to f around a critical point
a. With any h , 0, you have strayed from the point a, and the two sides of (2) are (generally)
unequal. But for a function f whose 2nd partial derivatives are continuous throughout an open
neighborhood containing a, they are enough equal for small }h} that an upswing in the term
p1{2q

@
h,H f paqh

D
(i.e., the e↵ects of H f paq being positive definite) overrides any other e↵ects in a

small neighborhood around a, and makes a the site of a local minimum.

Other tests of definiteness

The eigenvalues tell us about the definiteness, or lack thereof, of a symmetric matrix A. It can be
time-consuming, however, to compute the eigenvalues of a matrix. We seek another method by
which we may determine if a symmetric matrix is (semi)definite. This new method involves the
calculation of upper left determinants—i.e., determinants of submatrices emanating from the upper
left corner of a matrix. Given an n-by-n (symmetric) matrix A “ paijq, we define the relevant n

determinants �1, �2, . . . , �n to be

�1 “ a11, �2 “
������
a11 a12

a21 a22

������ �3 “

���������

a11 a12 a13

a21 a22 a23

a31 a32 a33

���������
, . . . , �n “ detpAq.

In the text, Strang notes that a symmetric matrix A is positive definite i↵ each � j ° 0. This is
known as Sylvester’s Criterion. In fact, the same upper left determinants can be used to tell that
a matrix is negative definite. We state and prove the theorem below. But first we state and prove
a fact relating the determinant of any square matrix to its eigenvalues.

Lemma 1: Suppose �1, . . . ,�n are the eigenvalues of the n-by-n matrix A. The |A| “
�1�2 ¨ ¨ ¨�n.
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Proof: Consider the n
th degree characteristic polynomial

pAp�q “ detpA ´ �Iq “ p´1qnp�´ �1q ¨ ¨ ¨ p�´ �nq,
where �1, . . . ,�n are the (perhaps nonreal) eigenvalues of A. Then

|A| “ pAp0q “ p´1qnp0 ´ �1q ¨ ¨ ¨ p0 ´ �nq “ p´1q2n

nπ

j“1
� j “

nπ

j“1
� j.

⇤

Theorem 2 (Generalized(?) Sylvester’s Criterion): Let qpxq “ x
T
Ax be a quadratic form

defined on Rn with symmetric nonsingular matrix A. We may conclude that q is

(i) positive definite if and only if�k ° 0 for each k “ 1, . . . ,n. Here, �k is the determinant
of the k-by-k submatrix of A comprising entries aij with 1 § i, j § k,

(ii) negative definite if and only if p´1qk�k ° 0 for each k “ 1, . . . ,n.

(iii) indefinite if neither of the previous two conditions is satisfied.

The proof, which you may read at your own behest (it continues on through the end of the next
page), follows. No doubt it is the most technical proof that has been given in the course.

Proof: Each “if and only if” statement requires a proof of two statements. We begin
with the ”i↵” statement in (i), focusing first on the assertion that �k ° 0 for each k

implies A is positive definite. The proof is by induction on n, the size of the matrix.
When n “ 1 (so the matrix has just one entry, a), then trivially �1 “ a ° 0 implies

xax “ ax
2 ° 0, for all real x , 0.

For our induction hypothesis, assume A is n-by-n for some n ° 1, and that the claim
holds for each quadratic form defined on Rn´1. Now, since 0 † �n “ �1�2 ¨ ¨ ¨�n, the
eigenvalues of A are all nonzero. If they are all positive, then we know qpxq “ xAx, xy is
positive definite. So, let us assume that some eigenvalue�i † 0. But for their product to
be positive, there must be an even number of negative eigenvalues, so let � j be another
negative eigenvalue, and take vi, v j to be eigenvectors of unit length corresponding
to �i, � j, respectively. We may assume vi and v j are orthogonal to each other, either
because �i , � j, or because Gram-Schmidt may be used to select orthogonal basis
vectors in an eigenspace. Let W “ spanptvi,v juq, a plane in Rn. Given any y P W, with
y “ yivi ` yjv j, we have

qpyq “ xAy,yy “
@
�iyivi ` � jyjv j, yivi ` yjv j

D

“ �iy
2
i

xvi,viy ` � jyiyj

@
v j,vi

D
` �iyiyj

@
vi,v j

D
` � jy

2
j

@
v j,v j

D

“ �iy
2
i

` � jy
2
j

† 0.
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Thus, q is negative for all nonzero y P W. Let q˚ : Rn´1 Ñ R be the restriction of
q to Rn´1, so that q˚px1, . . . , xn´1q :“ qpx1, . . . , xn´1, 0q. Along with that, let A˚ “
paijq1§i, j§n´1. Then

q˚px1, . . . , xn´1q “ qpx1, . . . , xn´1, 0q “
”
x1 ¨ ¨ ¨ xn´1

ı
A˚

»

——–

x1
...

xn´1

fi

��fl .

By assumption, �1, . . . , �n´1 are all positive, so using the induction hypothesis, we
get that q˚ is positive definite on Rn´1. But the pn ´ 1q-dimensional hyperplane in
Rn consisting of vectors x “ px1, . . . , xn´1, 0q and the plane W have at least a line in
common, and we have shown that qpvq for a nonzero vector v from that line is both
strictly positive and strictly negative. Ñ–
To prove the converse statement of (i), suppose q is positive definite, and let m ° 0
be the minimum value of q over the set tx P Rn : }x} “ 1u. Similar to above, we take
Ak “ paijq1§i, j§k and define a function qk : Rk Ñ R as the ”restriction of q to Rk”, in the
sense that

qkpx1, . . . , xkq “ qpx1, . . . , xk, 0, . . . , 0q “
”
x1 ¨ ¨ ¨ xk

ı
Ak

»

——–

x1
...

xk

fi

��fl .

Let µ1, . . . , µk be the eigenvalues of Ak. We know there is an x P Rk with }x} “ 1 such
that qkpxq “ µi. It follow from qkpxq “ qpx, 0q that each µi • m. Thus, by Lemma 1,
�k “ |Ak| “ µ1 ¨ ¨ ¨µk • m

k ° 0.

To prove (ii), define q
˚pxq “ ´qpxq, so that negative definiteness of q is equivalent

to positive definiteness of q
˚. By part (i), q

˚ is positive definite if and only if each
0 † �˚

k
“ | ´ Ak| “ p´1qk|Ak| “ p´1qk�k.

To prove (iii), note first that 0 , �n “ �1 ¨ ¨ ¨�n means every eigenvalue is nonzero. If
all were positive, then part (a) shows each �k ° 0; if all were negative, then part (b)
implies each p´1qk�k ° 0. since neither of these conditions holds by supposition, it
must be that A has both positive and negative eigenvalues, and is nondefinite. ⇤

Example 1:

Classify each of the nonsingular symmetric matrices A and B given below according to its
type of definiteness.

A “

»

—–
´1 1{2 1
1{2 ´1 1{2
1 1{2 1

fi

�fl , B “

»

————–

3 1 5 3
1 5 2 0
5 2 10 3
3 0 3 14

fi

����fl
.
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For A, we have

�1 “ ´1, �2 “
������
´1 1{2
1{2 ´1

������ “ 3
4
, �3 “ |A| “ 5

2
.

Thus, while A is nonsingular, neither of the conditions (i) nor (ii) of Theorem 2 hold, making
A indefinite.

For B, we have

�1 “ 3, �2 “
������
3 1
1 5

������ “ 14, �3 “

���������

3 1 5
1 5 2
5 2 10

���������
“ 23, �4 “ |B| “ 196.

Since each of these subdeterminants is positive, B is positive definite.

One more result, equivalent to positive definiteness, seems pertinent.

Theorem 3: A symmetric matrix A is positive definite if and only if A “ B
T
B for some

matrix B whose columns are all linearly independent.

Proof: Suppose, first, that A “ B
T
B, where the columns of B are linearly independent.

Due to the linear independence of its columns, NullpB
T
Bq “ NullpBq “ t0u, showing

that A is nonsingular. For x , 0, we have

xAx, xy “
@

B
T
Bx, x

D
“ xBx,Bxy “ }Bx}2 ° 0,

since x, being nonzero, is not in NullpBq.

The converse is harder to prove. Here, I rely on another factorization, called the
Cholesky factorization, which exists for any real symmetric matrix. This factorization
is A “ R

T
R, which gives the result with B “ R. We note, in particular, that were the

columns of B not linearly independent, then those in A “ R
T
R would not be either. ⇤
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