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Preface

In recent years, it has been observed that the average student enrolled in an

introductory calculus course at the college level is not as adept as she once was in

her prerequisite algebra/precalculus skills. Whether this comparison with the past

is accurate or not, it is certainly true that the average student makes many errors

of an algebraic (rather than a calculus) nature, and this serves only to divert her

focus from the subject at hand.

To address the issue of poor algebraic skills, many writers of calculus texts now

include a preliminary chapter for the review of precalculus concepts. While, in

theory, such a review seems a good idea, in practice, the benefits, at least in the

opinion of some, are dubious. In the ideal setting such a review would get ample

time (with some students getting advised to take an entire precalculus course at the

college level before entering calculus); instead, it is usually clear that the teacher is

trying to spend the minimal time necessary so as to arrive at the calculus as early

in the semester as possible.

This document was written, both out of experiences that have led to my aban-

doning an algebra review at the start of first semester calculus sections I teach, and

out of certain realities at my institution. As to the former, it is my experience that a

two-week review of precalculus is of little value. One might think that the stronger

students might be bored for a couple of weeks while the struggling ones gratefully

soak in the understanding of precalculus that has previously eluded them. In my

experience, it works the other way around. The strong students — the ones who

would do relatively well with no review — are the most engaged, while the weaker

ones are buoyed up by a false confidence bred out of a sense of familiarity with

the topics. For such students there are two rude awakenings to come at the end of

the review: the score on the exam testing their knowledge of precalculus, and the

very unfamiliar and difficult (to some more than others) concepts of calculus, now

thrown more quickly at them because several weeks were given over to review. It

is a discouraging way to begin a course, and many students never get their heads

above water again during the semester. In addition to experiences such as these, I

have a certain sympathy for the point of view that students who have enrolled in a

calculus course should get just that, not some hybrid course that is inappropriate

both for those who have strong algebra skills, and for those whose lack of algebraic

facility calls for a more extensive study of precalculus.

As to the realities at my institution, recent changes have led to the addition,

1



rather than elimination, of certain topics which had not formerly been in the first

year of calculus. Roughly speaking, two and a half semesters have been compressed

into two. Many of our students in first-year calculus are studying to be engineers,

and these changes are the result of the attempts on the part of the Mathematics

Department to accomodate the wishes of our Engineering Department, while main-

taining a calculus sequence that is coherent and mathematically sound. As one

might expect, we have tried to make the total course content for both semesters of

calculus comparable to what it was before the change; we have increased breadth at

the expense of depth. Nevertheless, several weeks of review at the start of a course

seems a more remote possibility than before.

It is not my response to ignore the sometimes-incomplete backgrounds of our stu-

dents, but to deal with the issue differently than with an initial precalculus review.

I usually take a just-in-time approach, providing a short treatise on various precal-

culus concepts at the moments they become relevant in our discussion of calculus.

For instance, I usually treat the subject of inverses about the time one discusses the

chain rule, inverse trigonometric functions, or logarithms and exponentials. Still,

the day-to-day algebraic errors which students make, such as the assumption that

all functions behave linearly, are not directly addressed by a review of the most

important precalculus concepts, whether this review comes all-at-once at the begin-

ning of the course, or in short bursts interspersed among calculus topics. It is for

these remaining pervasive errors that I have written this piece.

To be straight about it, its purpose is two-fold. One purpose is as mentioned

above, to provide a detailed discussion of some of the most common algebraic errors.

The other is to reduce the amount of writing a conscientious grader feels compelled

to do. I achieve the latter by giving names and 3 or 4-letter acronyms to the error

types. When one of these errors is seen, a grader need only write the acronym, not

a long discussion of the error. The student who receives the abbreviated 4-letter

comment is not shortchanged in the least. She may turn to this document, look up

the acronym, read the accompanying discussion, and benefit from it just as much

(more?) as she would have from a detailed comment.

Of course, for this grading/commenting system to be successful, students must

have access to this document. It currently is available on the web at

http://www.calvin.edu/∼scofield/courses/materials/tae/

Perhaps the bigger hurdle is that teachers must take the time to read and note

which errors are addressed herein, along with the acronym used for each. It may

2



take a nontrivial amount of time on the part of the instructor to get accustomed to

all of these. Still, I believe the time invested in the beginning should, in the long

run, reduce an instructor’s grading time.

Please address comments on this document — both those intended to improve

discussion of errors already addressed and those indicating an error which you think

should be addressed — to the author. Also, if you use this document, a vote of

confidence by way of a quick email would be appreciated.
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Linear Function Behavior (LFB)

Lines through the origin are peculiar in that they have an expression of

the form f(x) = mx, where m is a constant (the slope). This formula

makes possible the following “additive” property:

f(x1 + x2) = m(x1 + x2) = mx1 + mx2 = f(x1) + f(x2).

For the particular choices of x1 = x2 and x2 = 2x, we would have

f(x2 + 2x) = f(x2) + f(2x) = f(x2) + 2f(x).

Despite students’ tendancies to treat every function as additive, other

functions just do not have this property. Typical mistakes made

include:
√

3x2 + 2x =
√

3x2 +
√

2x LFB
(x + 2)3 = x3 + 8 LFB

ln(2x − 1) = ln(2x) − ln 1 LFB
1

x + 5
=

1

x
+

1

5
LFB

Cancelling Everything in Sight (CES)

Seeing a complicated fraction become less ugly as elements are cancelled

from both the numerator and denominator can be something of an en-

joyable experience. One’s first exposure to this magical process usually

comes in grade school when reducing fractions, such as

52

30
=

�2 · 26

�2 · 15
=

26

15
.

High school algebra classes build upon this, showing us that we may also

cancel expressions involving variables, as in

(x + 2)(x + 4)

(2x − 1)(x + 2)
=

����(x + 2)(x + 4)

(2x − 1)����(x + 2)
=

x + 4

2x − 1
.

What some students do not notice is that these cancellations only are

performed once the numerator and denominator are factored. Factor-

ing a numerator (or denominator) turns it into an expression which is,

4



at its top level, held together by multiplication. For instance, in the

expressions

x(3 − x)

5(x + 2)
numerator and denominator are factored,

(3x + 2)(x − 6)

5x2 + 2x
numerator is factored, denominator is not, except as (1)(5x2 + 2x)

x(x + 1) − 6

2x5
denominator is factored, numerator is not,

x2 − 3x + 5

2x3 − 1
neither numerator nor denominator is factored.

To be sure that one performs valid cancellations only, it is necessary to

• be patient, making sure to factor numerator and denominator first,

and cancelling only those factors common to both, and

• accept that many times no factorization is possible, at least none

that leads to a common, cancellable factor.

With this in mind, cancellations such as those below may only be labelled

instances of someone “cancelling everything in sight”, with no attention

given to the discussion above, and having no validity whatsoever.

3x2 + 2x − 1

2x − x2
=

3��x
2 + 2x − 1

2x −��x
2

=
3 + 2x − 1

2x − 1
=

2 +��2x

��2x − 1
=

2

−1
= −2. CES

Any attempt to simplify the original fraction (rational expression) should

start with factoring:

3x2 + 2x − 1

2x − x2
=

(3x − 1)(x + 1)

x(2 − x)
,

at which stage we see that there is no matching factor between those

of the numerator — namely, (3x − 1) and (x + 1) — and those of the

denominator — (x) and (2 − x). Factoring, in this case, did not lead to

any cancelling, as is often the case.
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Confusing Negative and Fractional Exponents (CNFE)

Students can make a variety of mistakes when it comes to working

with exponents. Two of the most common are Multiplying Expo-

nents that should be Added (MEA), and Adding Exponents

that should be Multiplied (AEM). This section does not deal with

either of these, but rather with a problem that some students have ap-

plying two basic rules about exponents, the ones concerning reciprocals

and roots. Specifically, these are

1

xm
= x−m and q

√
xp = xp/q,

respectively, where the understanding is that a square root (
√

) is to

be taken as ( 2
√

).

The first of these says that a factor of the denominator (see the

discussion on CES) raised to a power (be it positive or negative) may

be written as a factor to the oppositite power of the numerator (i.e., a

(−2) power becomes (+2), a (3/4) power becomes (−3/4)). The only

change is to the sign of the exponent. An example of a valid application

of this rule is
3

2x3
=

3

2
x−3 or 3(2)−1x−3.

The second rule shows how to write a root as a power, which can be

especially helpful in calculus when a derivative is desired. Things like

3
√

3x2 may be written as 31/3x2/3,

4

√

4(x − 7) may be written as [22(x − 7)]1/4 = 21/2(x − 7)1/4,

√

5x

x − 2
may be written as

√
5x1/2

(x − 2)1/2
.

Some students seem to confuse these two rules. The main errors seem

to come from students trying to reciprocate the wrong thing

1

x2
= x1/2, CNFE

2

x1/2
= 2x2, CNFE
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or from students putting a minus in when none is required

3
√

x2 = x−2/3, CNFE

3
√

2x − 1
=

3

(2x − 1)−1/2
= 3(2x − 1)1/2. CNFE

Multiplication Ignoring Powers (MIP)

Another law of exponents frequently misunderstood by students is

(am)(bm) = (ab)m.

This means that such statements as

4x2 = 22x2 = (2x)2, and

3
√

x = 91/2x1/2 = (9x)1/2 =
√

9x.

are correct. But many students ignore the significance of having identical

powers in these multiplications. They make statements like the following,

all of which are incorrect:

2x1/2 =
√

2x, MIP

−(3x)2 = 9x2, MIP

3(x + 1)2 = (3x + 3)2, MIP
3

2x2
= 3(2x)−2. MIP

Equation Properties for Expressions (EPE)

Early on in one’s high school algebra courses one learns several properties

of equality — namely

• Addition/Subtraction Property of Equality: One may add/subtract

the same quantity to/from both sides of a given equation, and the

solutions of the resulting equation will be the same as those of the

original (given) one.
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• Multiplication/Division Property of Equality: One may mul-

tiply/divide both sides of a given equation by the same nonzero

quantity, and the solutions of the resulting equation will be the

same as those of the original (given) one.

Notice that both of these properties pre-suppose that we start with an

equation, usually one we are supposed to solve (say, for x). These prop-

erties are helpful in achieving that goal, as in.

Solve 3x − 1 = 7:

Add 1 to both sides: 3x = 8

Divide both sides by 3: x =
8

3
or,

Solve
4x + 5

3x2 + 1
= 0:

Multiply both sides by the never-zero quantity (3x2 + 1): 4x + 5 = 0

Subtract 5 from both sides: 4x = −5

Divide both sides by 4: x = −5/4.

In contrast, these are not, generally speaking, properties one uses

when trying to simplify an expression. (There are exceptions to this, such

as in the simplifying of
∫

ex sin x dx and
∫

ex cos x dx using integration by

parts, but these are relatively rare.) Students asked to find the derivative

of

f(x) :=
3x

2x − 1

may find it easier to work with the function

3x

2x − 1
· (2x − 1), or 3x,

but they shouldn’t be under any illusions that 3x and 3x/(2x − 1) are

the same functions, nor that they have derivatives that are equal. If one

is simplifying an expression like

12/p − 5

3p
,

it may be tempting to multiply by p, which gives

12/p − 5

3p
· p =

12/p − 5

3p
·
p

1
=

(12/p − 5)p

3p
=

12 − 5p

3p
,
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but, of course, multiplying by p changed the expression. One must both

multiply and divide by p (equivalent to saying that we’re multiplying by

1) if the expression is going to remain the same (but hopefully simplified):

12/p − 5

3p
·
p

p
=

12 − 5p

3p2
.

Another example is in simplifying the difference quotient

√
2 + x + h −

√
2 + x

h
.

√
2 + x + h −

√
2 + x

h
=

√
2 + x + h −

√
2 + x

h
·

√
2 + x + h +

√
2 + x

√
2 + x + h +

√
2 + x

(really multiplication by 1)

=
(
√

2 + x + h −
√

2 + x)(
√

2 + x + h +
√

2 + x)

h(
√

2 + x + h +
√

2 + x)

=
2 + x + h − (2 + x)

h(
√

2 + x + h +
√

2 + x)

=
h

h(
√

2 + x + h +
√

2 + x)

=
1

√
2 + x + h +

√
2 + x

,

which cannot be further simplified.

Multiplication Without Parentheses (MWP)

The discussion here necessarily must begin with an appeal to the or-

der of algebraic operations (OO). These are rules of hierarchy as to

which operations to perform 1st, 2nd, etc. when an algebraic expression

requires more than one operation be performed. There are three levels

of hierarchy:

(1) powers,

(2) multiplication and division, and

(3) addition and subtraction.

When faced with an expression like the one below that has both an

addition and a multiplication in it, the order of operations dictates that

the multiplication be performed first:

2 + 3 · 5 is 17, not 30.
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The levels above do not give the whole story, however. For instance, what

if an expression has both an addition and a subtraction, operations which

appear at the same level? The answer here is that operations appearing

on the same level are always performed left-to-right:

2 + 3 − 5 is 0, 2 − 3 + 5 is 4, and 2/3 · 5 is
10

3
.

Also, one may use parentheses to override these rules. Things in paren-

theses are performed before things outside of those parentheses, starting

from the inside and working out. So

2 − (3 − (2 − 6)) is − 5,

while

2 − (3 − 2 − 6) is 7

and

2 − 3 − 2 − 6 is − 13.

These order of operations apply to expressions involving variables as

well. Thus

x · 2x − 7 is not the same as x(2x − 7),

3 − x/x2 (3 − x)/x2.

In this light, acceptable notation for the product of two expressions like

(3) and (−5x2) is

(3)(−5x2) or, more simply − 15x2,

not, as so many students write,

3 · −5x2. MWP
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Frivolous Parentheses (FP)

There really isn’t an error, per se, with using too many parentheses.

Nevertheless, students who consistently employ more parentheses than

needed are demonstrating as much of a lack of understanding of the order

of algebraic operations as those who use too few. Expressions such as

(

(2x2 + 3x)

(x − 1)

)

look simpler as
2x2 + 3x

x − 1
,

(

(2x2 + 3x)

(x − 1)

)3 (

2x2 + 3x

x − 1

)3

or
(2x2 + 3x)3

(x − 1)3
,

(3)
(

(x3 − 6)(−
√

x)
)

−3(x3 − 6)
√

x

(3 − x)

(x3)

3 − x

x3
or (3 − x)/x3.

.

Undo Multiplication with Division (UMD); also, Undo Addition with Sub-

traction (UAS)

The properties of equality that were mentioned earlier are, by some

students, implemented incorrectly even when the situation calls for their

use. For instance, when solving an equation like

3x + 7 = 4,

two steps are called for:

3x = −3 (subtraction prop. of equality; 7 subtracted from both sides)

and

x = −1 (division prop. of equality; both sides divided by 3).

Notice that, in the expression (3x + 7), the order of operations dictates

that the multiplication by 3 comes before the addition of 7, and the

“undoings” of these processes — the subtraction of 7 and the division

by 3 — were carried out in reverse order. That is not to say that we had
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to undo things in this order, but students who use a different sequence

often make the following error. Dividing by 3, they often neglect the

fact that all terms on both sides are to be divided by 3. In other words,

after dividing by 3 they write

x + 7 =
4

3
instead of x +

7

3
=

4

3
.

They are too set on the idea that they will be subtracting 7 from both

sides to realize that, having divided by 3 first, it is not 7, but rather 7/3,

which must be subtracted, giving the same answer x = −1 as before.

One other note is in order here. If parentheses appear in an equation

such as

3(x − 1) = 5,

then the order of operations are preempted (the subtraction within the

parentheses comes before the multiplication by 3). In solving for x, we

may of course, distribute the 3, thereby eliminating the parentheses and

making the problem appear similar to the last one discussed. Even fewer

steps are required if one just “undoes” the multiplication and subtraction

in their opposite order:

x − 1 =
5

3
(division prop. of equality; dividing both sides by 3),

and then

x =
8

3
(addition prop. of equality; adding 1 to both sides).

Now let us return to the equation

3x + 7 = 4,

and investigate the more telling errors that gave the titles UMD and

UAS to this section. Some students recognize the need for two steps

(like those carried out when this equation was being considered above)

to isolate x, but have little feel for which operations will achieve this. For

instance, realizing that, like the 4 on the right-hand side of the equation,

7 is a “non-x” term, a student may write

3x =
4

7
, UAS
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misunderstanding that she has subtracted 7 on the left side, but divided

by 7 on the other side. The original equation and the new one no longer

have the same solution as a result. The same student may then recognize

that she needs to move the 3 over to the other side. Since the 3 is

multiplied by the x, she should “undo” this by dividing both sides by 3.

But she may (wrongly) write

x =
4

7
− 3 = −

17

7
, UMD

having divided on the left but subtracted on the right. Again, the so-

lution (x = −17/7) is different from the one that solved the original

equation 3x + 7 = 4, namely x = −1.

Worse still is when a student thinks he can solve in one step (that is,

take care both of the multiplication by 3 and the addition of 7 via one

operation). Such a student may write something like

3x + 7 = 4 ⇒ x =
4

3 + 7
. UAS /UMD

Again, the answer this student gets, x = 2

5
, is different than the correct

one x = −1.

Misunderstood Relationship between Roots and Zeros (MRRZ)

Much of one’s mathematical experience prior to the calculus is spent in

solving equations. There are the kind of equations, known as identities,

where every number in the domain is a solution. The equation

(x − 2)(2x + 3) = 2x2 − x − 6,

is such an identity. It is not this, but the other type of equation, known

as a conditional equality, that one learns to solve, precisely because so-

lutions, also known as roots, of conditional equalities are not everywhere

to be found. Often there are very few numbers, perhaps even none at

all, which make a conditional equality true.

Another fact about conditional equalities is that comparatively few of

them may be solved exactly. Leaps in technology have made it common-

place for students, with the purchase of a handheld calculator, to have at

their fingertips powerful graphing capability and numerical methods for
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finding approximate solutions to many, perhaps even most conditional

equalities. This does not mean that one should forego learning the al-

gebraic techniques which lead to exact solutions, thinking that deftness

in pushing the right pair of buttons is an appropriate substitute for the

thought processes such algebraic methods introduce. Still, there is added

value in the knowledge one gets by investigating graphical methods. By

these methods one comes to think of the solutions of, say,

3x2 − 2x = 2x3 + x2 − 1

as the x-values of points of intersection between the graphs of the two

functions

y = 3x2 − 2x and y = 2x3 + x2 − 1.

As another example, solutions of the equation

x2 + 5x = −6

would be found at points of intersection between the graphs of

y = x2 + 5x (a parabola) and y = −6 (a horizontal line).

It is in solving equations like this latter one that students become con-

fused. What some students do is the following:

x2 + 5x = −6 ⇒ x(x + 5) = −6 (factor the left side)

⇒ x = 0 or x + 5 = 0 (set factors equal to zero)

⇒ x = 0 or x = −5. MRRZ

In mathematical terms, the student who does these steps has found the

zeros of f(x) = x2 + 5x; that is, the values for x which make the output

of f be zero. There are several ways to see that this work is wrong. One

way to see it is that, in the equation, we want values of x whose output

value is (−6), not zero. Another angle which reveals the errors is the

one that notes that, while there are a lot of pairs of numbers which may

be multiplied to give (-6) — (-1) and 6, 12 and (-1/2), 55 and (-6/55)

are three such pairs — one thing which we can say for certain is that

neither of the numbers in the pair is zero, which is quite counter to the
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idea of setting the factors equal to zero. (Of course, neither is it enough

to set the factors equal to (-6), as in

x(x + 5) = −6 ⇒ x = −6 or x + 5 = −6

⇒ x = −6 or x = −11, MRRZ’,

since it is not enough for either one of these conditions to hold by itself;

that is, if x = −6 then we would need the other factor (x + 5) to be

equal to 1 in order for their product to be (−6), and clearly these things

cannot occur at the same time.)

In summary, the error occurs in finding the zeros of a function and

taking them to be the roots of the equation, when the two concepts do

not coincide. There is a simple way to make them coincide. We simply

make one side zero (using a valid algebraic step, of course).

x2 + 5x = −6 ⇒ x2 + 5x + 6 = 0

⇒ (x + 2)(x + 3) = 0

⇒ x + 2 = 0 or x + 3 = 0

⇒ x = −2 or x = −3.

The zeros of g(x) = x2 + 5x + 6 are the numbers which make g equal

zero, and that is exactly what we want in a solution of the equation

x2 + 5x + 6 = 0, so the two concepts coincide. Why do students mess

this up? The most likely answer is that many are looking to do as

little work as possible, and bringing the (6) over makes factoring a more

difficult job (it is harder to factor x2 + 5x + 6 than to factor x2 + 5x); of

course, the quadratic formula is an option for this case. What may help

to avoid this confusion is remembering this graphical interpretation of

what one is doing (still applied to the example above):

• Solutions of an equation like x2 + 5x = −6 correspond to points of

intersection between the two sides, considered as functions, of the

equation (i.e., the function x2 + 5x and the function, in this case a

constant one, (−6)).

• If the two functions are combined into one function on one side of

the equation, there is still a second function, the zero function, that

remains on the other side. Now we have in place of the old problem

a new one (but entirely equivalent) of finding the solutions that
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correspond to points of intersection between the new left-hand side

(in this case x2 + 5x + 6) and the new right-hand side (here zero).

• When our combining of terms has left one side of the equation zero

(which, when considered as a function, has the x-axis as its graph),

one may solve the equation by finding the zeros of the other side of

the equation.

Multiplication Not Distributive (MND)

In precalculus/algebra we become familiar with the distributive laws that

address interactions between multiplication and addition/subtraction.

Specifically, these laws say

a(b + c) = ab + ac and (a + b)c = ac + bc.

We use these laws all the time, both in expanding

3x2(x − 2y) = 3x3 − 6x2y and

(x − 3)(x + 7) = (x − 3)x + (x − 3)(7) = x2 − 3x + 7x − 21 = x2 + 4x − 21,

and in factoring

30x2y − 12xy2 + 3xy = 3xy(10x − 4y + 1).

We even use it (although we don’t often think about it this way and

usually don’t include the middle step below) when combining like terms,

as in

4xy − 15xy = (4 − 15)xy = −11xy.

The problem is when students misinterpret these laws, thinking they also

say something about interactions between more than one multiplication;

that is, they “invent” for themselves a law that looks something like:

a(b · c) = (ab)(ac). MND

This clearly is false, as most would see if these were all numbers — few

(though I cannot go so far as to say no one) would assert, say, that

7(3 · 10) = (21)(70) = 1470. MND
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But when the objects involved are expressions involving variables, the

error is frequently made, such as in this case:

5(2x2y3) = (10x2)(5y3) = 50x2y3, MND

or

3[(x − 1)(7x)] = (3x − 3)(21x). MND

Poor Use of Mathematical Language (PUML)

A prerequisite skill to writing good mathematics is the ability to write

well in one’s native tongue. People who cannot write a complete English

sentence should take remediation in English composition before reading

on.

What may surprise some students is that good writing using math-

ematical symbols (even in the write-up of homework problems) consists

of using complete sentences, setting up one’s ideas clearly and then fol-

lowing through on the details, much as one expects from a good English

essay. The language and symbols of mathematics are used just like reg-

ular English words and phrases to express ideas, albeit ideas which one

would often struggle to use any other means of expressing.

Nobody studies mathematical writing as a subject. Your mathemat-

ics professor(s) got to be good writers of mathematics, if good they be,

by the reading papers and books of other mathematicians, not by read-

ing a treatise such as this one. If a book on good mathematical writing

does exist (and there probably are a number of such books), they will say

much more than I say here. I will only describe the most common ex-

ample of poor mathematical writing I see when grading students’ work:

Using Equals as a Conjunction (UEC).

The word “equals” has a very specific meaning. It requires two ob-

jects, and it asserts that these two objects are the same. In mathematics,

the two objects are usually quantities, like the mathematical expression

(3x + 5), or the number 7. Even within this tight definition, mathemat-

ical equations, as I mentioned earlier, come in two varieties: identities

and conditional equations. A conditional equation is one such as the

equation

3x + 5 = 7,
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which is true only for particular values of x (in this case one particular

value). In algebra courses one often sees conditional equalities in home-

work problems accompanied by the instruction “Solve the equation”.

There are some quantities that are the same regardless of the value of

the variable. A familiar example is the identity

sin2 x + cos2 x = 1,

which is true no matter what real value x takes. These two types of

equations encompass the two most common (and only?) valid ways to

use an ‘equals’ (=) sign.

Consider the typical calculus problem of evaluating a limit like

lim
x→2

x2 − x − 2

x2 − 4
.

What we are given here is not an equation, but an expression. If we

begin writing a series of equalities to simplify/evaluate this expression,

we will want them to be identities, as in

lim
x→2

x2 − x − 2

x2 − 4
= lim

x→2

(x − 2)(x + 1)

(x + 2)(x − 2)

= lim
x→2

x + 1

x + 2

=
3

4
.

The original expression, along with each of the ensuing expressions, as

it turns out, are all equal to the number 3/4.

In contrast, suppose we begin with a (conditional) equation like

3x + 5 = 7,

which we are asked to solve. If a student who understands very well

the discussion of UAS and UMD (found earlier in this piece) makes a

mistake, she is most likely to do so writing something like

3x + 5 = 7 − 5 =
2

3
. UEC

Such a string of equalities asserts three things:
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(i) that 3x + 5 = 2,

(ii) that 3x + 5 = 2/3,

(iii) and that 2 = 2/3.

(i) and (ii) are conditional equations in their own right, but it should be

clear that they do not have the same solutions as the original equation

3x+5 = 7 (nor does (i) have the same solution as (ii)). And (iii) has no

solution at all, for it is never true. What I am really saying is that the

string of equations

3x + 5 = 7 − 5 =
2

3
(1)

is really three equations, and there is no common solution between them

(and, even if there had been, such a solution would have no relevance to

the original problem, that of solving 3x+5 = 7). The student most likely

never intended to assert these three equations in place of the original; she

simply began writing out her ideas, and used an equals sign to join them

together whenever it seemed some sort of ‘conjunction’ was required.

The student who writes (1) actually appears to have some facility in

the techniques for solving linear equations, but lacks the ability to put

her ideas onto paper in a meaningful fashion. One good way to express

the solution of the previous equation is

3x + 5 = 7 ⇒ 3x = 2

⇒ x =
2

3
. (2)

The symbol ⇒ can be translated here as “which implies”. Yes, (2) is

more writing than (1), much in the same way the complete sentence “I

am taking the train to Chicago this weekend” requires more writing than

the three words “weekend, Chicago, train”. A more favorable comparison

is between (2) and the same ideas expressed in English words:

If the sum of three times x and five is seven, then subtracting

five from both sides and dividing by three yields the value of

two-thirds for x,

or, perhaps more literally,

Assuming that the sum of three times x and five is seven, this

implies that three times x is two, and that x is two-thirds.
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