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The Setting

We have a quantitative variable of interest, and samples taken from at least 2 groups in which the (population)
standard deviations are equal. If there are precisely 2 groups, we may use the bootstrapping/randomization
approaches of Chapters 3 and 4, or (if appropriate) the 2-sample mean (t) procedures of Sections 6.10-6.12.
One-way ANOVA is redundant in that case, but very useful for when there are more than 2 groups.

In this context we test these hypotheses:

H0 : µ1 = µ2 = . . . = µk (the means of the k groups are all equal)
Ha : for at least one pair of groups, µi 6= µj

Form of the Data

The form should be much the same as when we compare means of independent samples. For each case in
the data set, we need (at least) one categorical variable that indicates what group the case is in, and one
quantitative measurement (the response variable of interest).

In the iris data set, we have Species which can serve as the grouping variable, and we have many quantitative
variables on which we could focus.

head(iris)

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa

In the job safety data frame (which must be loaded), there are variables which can serve in the two roles as
well.

js = read.csv("http://www.calvin.edu/~scofield/data/csv/ips5e/jobSafety.csv")
head(js)

## X jobcat jobc SCI
## 1 1 unskill 1 76
## 2 2 unskill 1 61
## 3 3 unskill 1 56
## 4 4 unskill 1 92
## 5 5 unskill 1 41
## 6 6 unskill 1 51
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In the SandwichAnts data frame, we have the required components, too.

head(SandwichAnts)

## Butter Filling Bread Ants Order
## 1 no Vegemite Rye 18 10
## 2 no Peanut Butter Rye 43 26
## 3 no Ham & Pickles Rye 44 39
## 4 no Vegemite Wholemeal 29 25
## 5 no Peanut Butter Wholemeal 59 35
## 6 no Ham & Pickles Wholemeal 34 1

Looking at the Data

One might look at a breakdown of the reponse variable by group using, say, side-by-side boxplots. For the
data sets mentioned above, here are some examples.

bwplot(Species ~ Sepal.Length, data=iris, main="Iris Sepal Lengths by Species")

Iris Sepal Lengths by Species

Sepal.Length

setosa

versicolor

virginica

5 6 7 8

bwplot(jobcat ~ SCI, data=js, main="Job Safety Ratings (SCI) by Position Type")
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Job Safety Ratings (SCI) by Position Type
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bwplot(Filling ~ Ants, data=SandwichAnts, main="Counts of Ants on Sandwiches with Various Fillings")
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Viewing these pictures is not a necessary step to a 1-way ANOVA test. But it is plots such as these which
are used in Section 8.1 to build intuition about how a comparison between “variance in group means” and
“variance within groups” leads to a testing procedure (in particular, a test statistic).

The ANOVA table and F -statistic

The ANOVA table—how it is constructed, what its various entries reveal—is described in the text. Suffice it
to say that the calculations involved are among the most technical yet, though they bear a resemblance to the
calculation of standard deviation (after all, it is analysis of variance). We will use a (mostly) all-in-one-step
command to build the table. The root command is one we used earlier in the course when finding the
least-squares regression line: lm(). (In the earlier usage, both our variables were quantitative.) To obtain an
ANOVA table for the iris variables plotted above, we type
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anova( lm(Sepal.Length ~ Species, data=iris) )

## Analysis of Variance Table
##
## Response: Sepal.Length
## Df Sum Sq Mean Sq F value Pr(>F)
## Species 2 63.212 31.606 119.26 < 2.2e-16 ***
## Residuals 147 38.956 0.265
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

All the numbers in this table are calculated as explained in the text. The number the text refers to as MSG,
which measures the variability between groups, 31.606. It is the ratio SSG/dfG:

MSG = SSG

dfG
= SSG

k − 1 = 63.212
2 = 31.606,

where k = 3 represents the number of groups (in this case, the number of species of iris plants represented
in the study). While the formula for MSG is not identical to that for the variance of a single quantitative
variable, it is the result of adapting that formula to the present situation.

The MSE that appears in this table is the result of a similar calculation:

MSE = SSE

dfE
= SSE

n− k
= 38.956

147 = 0.265,

where the dfE is the difference n− k (sample size minus the number of groups). This number measures the
amount of variation within groups. If, at this point, it was up to us to compute the F statistic knowing only
the MSG and MSE, we could divide them to obtain

F = MSG

MSE

.= 119.26,

the ratio of between-group variation to within-group variation. When the null hypothesis is met, this number
would be 1, or quite close to it. As the data becomes less consistent with the null hypothesis, this ratio grows,
meaning that a corresponding P -value comes from the proportion of F -values to the right of our calculated
one (i.e., our test statistic), just as when we calculated P -values from a sample’s χ2 test statistic in Chapter 7.

Obtaining a P -value Via Randomization

The command

anova(lm(Sepal.Length ~ Species, data=iris))

gives us the ANOVA table (see above). The F value is in the first row, 4th column of that table, so this
command

anova(lm(Sepal.Length ~ Species, data=iris))[1,4]

## [1] 119.2645
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gives us just the F -value, our test statistic.

Generating a randomization distribution in an ANOVA setting is no more difficult than in a 2-sample mean
setting. We use all the data (i.e., we sample without replacement), but randomly shuffle the values of the
(categorical) explanatory variable first. Thus,

anova(lm(Sepal.Length ~ shuffle(Species), data=iris))[1,4]

## [1] 0.9284832

gives us one randomization statistic, and we obtain a simulated distribution of such statistics by repeating
this command many times:

manyFs = do(1000) * anova(lm(Sepal.Length ~ shuffle(Species), data=iris))[1,4]
head(manyFs)

## result
## 1 0.9140273
## 2 1.3421058
## 3 0.2188681
## 4 0.1916673
## 5 1.1742053
## 6 0.6990331

histogram(~result, data=manyFs)
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We obtain an approximate P -
value by determining how often a randomized F -statistic exceeded ours.

nrow(subset(manyFs, result>119.26))

## [1] 0

While a P -value is never zero, this reported number is so because in our 1000 tries we never obtained a
randomized F -statistic this large (i.e., it is quite rare when the null hypothesis is true).
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F distributions

The shape of the randomization distribution displayed above may make you wonder if there is a known
family of distributions for which this one is a predictable special case. Indeed this is so, and will be when the
following assumptions are met:

• Within each group, the response variable is normal. This is, of course, a difficult thing to check, unless
within-group sample sizes are large enough to make it less important.

• The (population) standard deviations within each group are equal. This, of course, does not mean the
group (sample) standard deviations are equal, but as a rule of thumb we generally ask that the ratio or
largest sample standard deviation to smallest is no bigger than 2.

When these conditions are in place, the distribution of F -values approximately follows an F -distribution,
of which there are many; the best-fitting one is the one with the two parameters, df1 and df2, set to their
corresponding values from the table (with dfG being the one used for df1). We overlay such a distribution on
the previous histogram:

histogram(~result, data=manyFs)
plotDist("f", df1=2, df2=147, add=TRUE)
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As our null distribution is well-modeled using this particular F -distribution, we may compute the P -value
using the pf() command:

pf(119.26, df1=2, df2=147)

## [1] 1

Pairwise Comparisons

When, as above, the P -value leads to a rejection of the null hypothesis, we have only settled that at least
one group (population) mean is different. One wants next to know what one (or ones) are different. This
is not an issue to be settled “by eye”, but rather with a statistical procedure. The Lock text discusses one
method of comparing means two at a time, but you will not be held responsible for knowing the approach
they discuss. Instead, you will be expected to be able to use and interpret the results of the TukeyHSD()
command, used below. (Note the use of aov() along with it.)
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TukeyHSD( aov( Sepal.Length~Species, data=iris ) )

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Sepal.Length ~ Species, data = iris)
##
## $Species
## diff lwr upr p adj
## versicolor-setosa 0.930 0.6862273 1.1737727 0
## virginica-setosa 1.582 1.3382273 1.8257727 0
## virginica-versicolor 0.652 0.4082273 0.8957727 0

For this data, we conclude there is a significant difference (at least at the 95% level, as each of the confidence
intervals displayed are 95% ones) between each pair of means.
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