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Chapter 1

Logic and Proofs

1.1. Propositional calculus

Definition. A proposition is a declarative sentence that is either true or
false, but not both.

Note. The word “proposition” is used this way in logic and in computer
science. In most other advanced mathematics courses, the word “propo-
sition” is used as another name for “theorem.” This is true in Euclidean
geometry, for example. In that case, what we are calling a proposition is
instead referred to as a statement.

We will use letters like p and q to denote propositions.

Every proposition has a truth value: it is either true (T) or false (F).

Definition. Let p be a proposition. The negation of p, written ¬p, is the
statement “It is not the case that p.”

The truth value of ¬p is the opposite of that of p.

Given two propositions p and q, we can form new (compound) propositions
from them using the logical operators (also called logical connectives).

(1) conjunction: p ∧ q, p and q

(2) disjunction: p ∨ q, p or q

(3) exclusive or: p⊕ q, p XOR q

(4) conditional statement: p→ q, p implies q (or “if p, then q”)

The following truth table specifies the meaning of the logical operators.

1



2 1. Logic and Proofs

p q ¬p ¬q p ∧ q p ∨ q p⊕ q p→ q

T T F F T T F T
T F F T F T T F
F T T F F T T T
F F T T F F F T

In mathematics the word “or”, when used by itself, is always understood in
the nonexclusive sense. Hence p∨ q allows the possibility that both p and q
are true. The “exclusive or” must be used if we require that exactly one of
the two statements is true. This removes the ambiguity that is present in
everyday English usage.

In the conditional statement p→ q, p is called the hypothesis and q is called
the conclusion.

In this chapter we are studying purely logical relationships. In that context
the conditional statement p → q simply means that q is true provided p is.
It should not be interpreted to mean the p somehow causes q to be true. If
p happens to be true, then q must also be true (for whatever reason). If p
happens not be be true, then nothing is required of q. In other words, if p
is false, then p → q is true regardless of whether q is true or false—see the
last two lines of the truth table. In case p is false, we will say that p→ q is
vacuously true.

There are several ways to make new conditional statements from old ones.

Definition. The converse of p→ q is q → p.

Definition. The contrapositive of p→ q is (¬q)→ (¬p).

The statement (¬p)→ (¬q) is called the inverse of p→ q. It is the contra-
positive of the converse. We will not make use of the inverse.

Definition. The proposition p↔ q is called a biconditional.

p↔ q means (p→ q) ∧ (q → p).

Terminology. The words “necessary” and “sufficient” are also used for
conditional statements. If p→ q, we say that q is a necessary condition for
p or that p is a sufficient condition for q. In this terminology, p↔ q means
that p is a necessary and sufficient condition for q. The expression “only if”
is often used to mean “implies.” Thus “p only if q” means the same as “if p,
then q.” This allows the biconditional p↔ q to be written as p if and only
if q, which is abbreviated p iff q.
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Exercises 1.1

1. Decide whether or not each of the following is a proposition. Give
the truth values of those that are propositions.
(a) Do your homework!
(b) How many students are enrolled in Math 256 this semester?
(c) There are 100 students enrolled in Math 256 this semester.
(d) x+ 1 = 5.
(e) Math is fun.

2. Let p be the proposition “It is raining” and let q be the proposition
“I get wet.” Express each of the following compound propositions
as an English sentence.
(a) p ∨ q
(b) p→ q
(c) p ∧ (¬q)

3. Let p be the proposition “It is raining” and let q be the proposition
“I walk to work.” Express each of the following in terms of p, q
and logical operators.
(a) It is raining, but I walk to work.
(b) If it is raining, then I do not walk to work.
(c) I walk to work whenever it is not raining.

4. Identify the hypothesis and conclusion of each of the following state-
ments.
(a) If it rains, then I get wet.
(b) If the sun shines, then we go hiking and biking.
(c) If x > 0, then there exists a y such that y2 = 0.
(d) If 2x+ 1 = 5, then either x = 2 or x = 3.

5. State the converse and contrapositive of each of the statements in
Exercise 4.

6. Write each of the following statements in “if. . . , then. . . ” form.
(a) It is necessary to score at least 90% on the test in order to

receive an A.
(b) A sufficient condition for passing the test is a score of 50% or

higher.
(c) You fail only if you score less than 50%.
(d) You succeed whenever you try hard.

7. State the converse and contrapositive of each of the statements in
Exercise 6.

8. Restate each of the following assertions in “if. . . , then. . . ” form.
(a) Perpendicular lines must intersect.
(b) Any two great circles on a sphere intersect.
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(c) Congruent triangles are similar.

9. Identify the hypothesis and conclusion of each of the following state-
ments.
(a) I can take topology if I pass geometry.
(b) I get wet whenever it rains.
(c) A number is divisible by 4 only if it is even.

10. Let p be the proposition “If 2 < 1, then 3 < 1.” Is p true or false?
Explain.

1.2. Equivalence of propositions

Definition. A compound proposition is one that is built from simpler propo-
sitions using logical operators.

Definition. A tautology is a compound proposition that is always true re-
gardless of the truth values of the constituent propositions.

Example. The statement p ∨ (¬p) is a tautology as is p→ p.

Definition. Two compound statements p and q are logically equivalent if
p↔ q is a tautology.

Notation. Logical equivalence is denoted by ≡.

Here is an informal, but more useful, statement of the definition of logical
equivalence: two compound propositions are logically equivalent if for any
values of the constituent propositions they are either both true or both false.

Example. p ∧ (q ∨ (¬q)) ≡ p.

In the preceding example, the two compound propositions are made up of
different constituent propositions. In most cases of interest, the two will
include the same constituent propositions. In that case, logical equivalence
can be demonstrated by checking that the truth tables for the two compound
propositions are the same. In the next example, observe that columns 3
and 6 of the truth table contain the same values.

Example. The conditional statement p → q is logically equivalent to its
contrapositive (¬q)→ (¬p).

p q p→ q ¬q ¬p (¬q)→ (¬p)
T T T F F T
T F F T F F
F T T F T T
F F T T T T
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Negating conjunction and disjunction. The negation of the assertion
that at least one of p and q is true is the assertion that neither of them is
true. In other words, the negation of p ∨ q is (¬p) ∧ (¬q). In the same way,
the negation of p ∧ q is (¬p) ∨ (¬q). We summarize these two observations
by saying that “negation interchanges disjunction and conjunction”. The
rules are formalized in the following laws.

De Morgan’s Laws.

(1) ¬(p ∧ q) ≡ (¬p) ∨ (¬q).
(2) ¬(p ∨ q) ≡ (¬p) ∧ (¬q).

Here is a truth table that demonstrates De Morgan’s first law.

p q p ∧ q ¬(p ∧ q) ¬p ¬q (¬p) ∨ (¬q)
T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

Negating a conditional statement. The conditional statement p → q
means that q is true whenever p is; thus the negation of p → q is the
assertion that it is possible for p to be true while q is false. Note that the
negation of a conditional statement is not another conditional statement.

Example. ¬(p→ q) ≡ p ∧ (¬q).

As usual, this is demonstrated by means of a truth table.

p q p→ q ¬(p→ q) p ¬q p ∧ (¬q)
T T T F T F F
T F F T T T T
F T T F F F F
F F T F F T F

Exercises 1.2

1. Show that (p ∧ q)→ p is a tautology.

2. Is (p ∨ q)→ p a tautology? Explain.

3. Construct a truth table that verifies De Morgan’s second law.

4. Construct a truth table that verifies the distributive law p∧(q∨r) ≡
(p ∧ q) ∨ (p ∧ r).

5. Show that p↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q).
6. Show that (p ∧ q) ∨ (p ∧ (¬q)) ≡ p.
7. Show that (p ∨ q)→ r ≡ (p→ r) ∧ (q → r).
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8. Show that p→ (q → r) ≡ q → (¬p ∨ r).
9. Write the negation of each of the statements in Exercise 1.1.4.

10. Write the negation of each of the statements in Exercise 1.1.6.

1.3. Predicate logic

Many of the statements we encounter in mathematics involve variables. An
assertion such as “x > 0” does not, by itself, qualify as a proposition in
the technical sense defined in §1.1 because it is neither true nor false until
a value has been assigned to the variable x. The statements we will study
in this section typically have a subject, which is a variable, and a predicate,
which asserts that the subject has a certain property. For example, in the
sentence “x is greater than 0 ”, “x” is the subject, and “is greater than 0”
is the predicate. For that reason the study of the logical structure of such
statements is called predicate logic or the predicate calculus.

Definition. A propositional function is a function that assigns a truth value
to a variable; i.e., a propositional function is a function whose range consists
of the set {True,False}.

[If you’ve forgotten what is meant by the range of a function, you can look
ahead to the next chapter where the definitions of function, domain, and
range that you learned in high school are reviewed.]

Example. The function P (x) = (x > 0) is a propositional function; e.g.,
P (5) = True, P (0) = False. Notice that P (x) is not a proposition, but P (0)
is a proposition.

The domain of a propositional function can usually be determined from
the context. For example, the domain of the function P in the preceding
example is R, the set of all real numbers. If the domain is not clear from
the context, then it should be specified explicitly.

A propositional function can have more than one independent variable; e.g.,
Q(x, y), R(x, y, z), etc.

Example. Q(x, y) = (x+ y > 0) is a propositional function whose domain
consists of pairs of real numbers. In this example Q(−1, 1) = False and
Q(−1, 2) = True.

Example. P (`,m) = (` ‖ m) is a propositional function whose domain
consists of ordered pairs of lines (`,m).

Quantifiers. While a propositional function by itself is not a proposition
(because P (x) does not have a truth value until x is assigned a value), the
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statements “P (x) is true for every x” and “there exists an x for which P (x)
is true” are propositions. This process of making a proposition out of a
propositional function is called quantification. There are two quantifiers.

(1) The universal quantifier : ∀xP (x), which is read “for every x P (x)”
or “for all x P (x)”, means that P (x) is true for every value of x.
In order for this to make sense there must be a clearly understood
universe of discourse, which consists of the set of all possible values
for x.

(2) The existential quantifier : ∃xP (x), which is read “there exists an
x P (x),” means that there is at least one value for x for which the
proposition P (x) is true. Again it must be made clear what the
possible values of x are.

Observe that ∀ generalizes ∧ and ∃ generalizes ∨. This is reflected in the
fact that there are De Morgan’s laws for quantifiers that exactly parallel the
De Morgan’s laws we saw before.

De Morgan’s laws for quantifiers.

(1) ¬(∀xP (x)) ≡ ∃x¬(P (x))

(2) ¬(∃xP (x)) ≡ ∀x¬(P (x))

Propositional functions in conditional statements. Another way in
which to make a proposition out of propositional functions is to use them
as the hypothesis and conclusion of a conditional statement. For example,
if x > 3, then x2 > 9 is a proposition. The statement “if P (x), then Q(x)”
means that any value of x that makes P (x) true must make Q(x) true as
well.

Uniqueness. The existential quantifier is often combined with an assertion
about uniqueness. The symbols ∃!xP (x) are read “there exists a unique x
such that P (x) is true.” This proposition asserts two things: first, that there
is an x such that P (x) and, second, that there is only one x such that P (x).
The definition is

∃!xP (x) = (∃xP (x)) ∧ ((P (x) ∧ P (y))→ (x = y))

Note that ∃! is not a new quantifier, but the conjunction of a quantifier
and another statement about uniqueness. The combination has a special
notation simply because it occurs so often.

Examples.

(1) Commutative law for addition: ∀x ∀y (x+ y = y + x).

(2) Existence of additive identity: ∃z ∀x (z + x = x).

(3) Existence of additive inverses: ∀x ∃y (x+ y = 0).
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(4) Switch the order of quantifiers in (3): ∃y ∀x (x+ y = 0). (???)

(5) Existence of parallels: ∀`∀P (P /∈ `) ∃!m ((P ∈ m) ∧ (m ‖ `)).
(6) Definition of continuous at x: ∀ε > 0 ∃δ > 0 ((0 < |x− y| < δ) →

(|f(x)− f(y)| < ε)).

Negation of preceding examples.

(1′) ∃x ∃y (x+ y 6= y + x).

(2′) ∀z ∃x (z + x 6= x).

(3′) ∃x ∀y (x+ y 6= 0).

(4′) ∀y ∃x (x+ y 6= 0).

Exercises 1.3

1. Let P (x) be the statement x = x2, where x is a real number. Find
the truth value of each of the following.
(a) P (−1)
(b) P (0)
(c) P (1)
(d) P (2)
(e) ∀xP (x)
(f) ∃xP (x)

2. Let Q(x, y) = (x + y > 0), where x and y are real numbers. Find
the truth value of each of the following.
(a) Q(2,−3)
(b) ∃y Q(2, y)
(c) ∀y Q(2, y)
(d) ∃x ∃y Q(x, y)
(e) ∀x ∃y Q(x, y)
(f) ∀x ∀y Q(x, y)

3. Let P (x) = (x is taking a physics course),
R(x) = (x is taking a religion course), and
E(x) = (x is taking an English course),
where x is a member of the Math 256 class. Express each of the
following in terms of those three propositional functions, logical
operators, and quantifiers.
(a) A student in the class is taking physics, religion, and English.
(b) Every student in the class is taking religion.
(c) No one in the class is taking both physics and English.
(d) Someone in the class is taking both physics and religion.
(e) Every student in the class is taking at least one of physics,

religion, and English.
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(f) For each of the three subjects (physics, religion, English), there
is at least one student in the course who is taking that subject.

4. Let C(x, y) be the statement “student x is enrolled in course y”.
Write each of the following logical expressions as a plain English
sentence.
(a) C(Nick,CPSC 108).
(b) ∃x C(x,Spanish 101).
(c) ∃y (y 6= Math 256 ) ∧ C(Kaylee, y)).
(d) ∃x (C(x,Music 243) ∧ C(x,Math 243)).
(e) ∃x ∃y ∀z ((x 6= y) ∧ (C(x, z)→ C(y, z)).
(f) ∃x ∃y ∀z ((x 6= y) ∧ (C(x, z)↔ C(y, z)).

5. Let I(x) be the statement “x has an iPad”, let F (x, y) be the
statement “x and y are friends”, where the domain for both x
and y is the set of all students at Calvin College. Translate the
statement

∀x(I(x) ∨ ∃y(I(y) ∧ F (x, y)))

into English.

6. Let F (x, y) be statement “x can fool y”, where the domain for both
variables is the set of all people in the world. Use quantifiers to
express each of the following statements:
(a) Everybody can fool Fred.
(b) There is no one who can fool everybody.
(c) Everyone can be fooled by somebody.
(d) Tim can fool exactly two people.
(e) There is exactly one person whom everybody can fool.
(f) No one can fool himself or herself.

7. Let R(x, y) be the statement “x+y = x−y.” Find the truth values
of the following statements.
(a) R(2, 0)
(b) ∀y R(1, y)
(c) ∀x ∃y R(x, y)
(d) ∀y ∃xR(x, y)
(e) ∃y ∀xR(x, y)

8. Rewrite each of the following statements so that negations appear
only within predicates.
(a) ¬(∀x ∀y P (x, y))
(b) ¬(∀y ∀x (P (x, y) ∨Q(x, y)))
(c) ¬(∀x (∃y ∀z P (x, y, z) ∧ ∃z ∀y P (x, y, z)))
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1.4. Proofs

This section briefly lays out basic information about how to write proofs.
The next section contains a number of examples of proofs that are written
in the style described in this section.

Terminology. An axiom (or postulate) is a statement that is assumed with-
out proof. In the conditional statement “if p, then q”, p is called the hypothe-
sis (or antecedent or premise) and q is called the conclusion (or consequent).
A proof for a conditional statement is a logical argument which demonstrates
that if the hypothesis is true, then the conclusion is true. A theorem is a
conditional statement that has a proof. A lemma is a minor theorem that
is a step in the proof of a major theorem. A corollary is a theorem that can
be simply proved using a given theorem. Sometimes proposition is used as
a synonym for theorem. Some authors reserve the word “proposition” for a
less important theorem.

Theorem statements. As indicated above, a theorem is a conditional
statement (that has a proof). But theorems are often stated informally
in a way that does not fit the strict “if. . . , then. . . ” form of a conditional
statement. In that case it is necessary to restate the theorem in “if. . . ,
then. . . ” form before the proof is written.

Forms of proof. A proof of h→ c can take any one of the following forms.

(1) Direct proof. This is the most straightforward method of proof.
Begin by assuming that h is true. Argue in a sequence of logical
steps that c must also be true.

(2) Proof by contraposition. A direct proof of (¬c)→ (¬h). Since the
conditional statement and its contrapositive are logically equiva-
lent, this will suffice.

(3) Proof by contradiction, or reductio ad absurdum (RAA). The truth
table for h → c shows that h → c is true except in the case when
h is true and c is false. So an indirect way to prove h → c is to
prove that h ∧ (¬c) is impossible. We show this by demonstrating
that h ∧ (¬c) leads to a contradiction. In symbols, we show that
(h ∧ (¬c))→ (r ∧ (¬r)) for some r.

(4) Proof by cases. If there are only a finite number of ways in which
the hypothesis can be true, we can prove the theorem by considering
each of the cases separately and proving that the conclusion holds
in each of them. (See Exercise 1.2.7 for a verification of the logic
of this proof form.)
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Proofs by contraposition and contradiction are both somewhat indirect and
are often confused. Be sure to notice that they are logically different; in a
proof by contraposition we assume only ¬c while in a proof by contradiction
we assume both h and ¬c. When viewed in this way, it is clear why proof
by contradiction is often the best way to prove a theorem: in both direct
proof and proof by contraposition we assume only one thing (h in a direct
proof, ¬c in a proof by contraposition), but in a proof by contraction we
assume both h and ¬c and thus have more information to work with in the
proof. In order to distinguish the two kinds of assumptions in a proof by
contradiction we sometimes refer to ¬c as the RAA hypothesis.

Later in the course we will learn a fifth proof form, proof by mathematical
induction.

Valid reasons. Each step in the proof must be supported by a reason.
Here is the list of the acceptable kinds of reasons.

(1) By hypothesis.

(2) By axiom.

(3) By definition.

(4) By a previously proved theorem.

(5) By a previous step in the current proof.

(6) By one of the rules of logic.

How to write proofs.

(1) Begin by restating the theorem in if . . . then form.

(2) Put the label Proof at the beginning of the proof and use either
QED or � to mark the end of the proof.

(3) Indicate explicitly which proof form you are using and what your
assumptions are.

(4) Write the argument in complete sentences, in paragraph form.

(5) Back up every step in the proof with a reason. The reason can
either be stated within the sentence or added in parentheses at the
end of the sentence.

1.5. Examples of proofs

The example proofs in this section are meant to serve as models of the proofs
you should write in this course. You should use the same style for the proofs
you write in all your upper-level mathematics courses at Calvin.

Theorems and proofs must be about something. We will practice writing
proofs in the context of elementary number theory. This section spells out
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exactly what we will assume about number theory and provides some sample
proofs. The purpose of the sample proofs is to model what your written
proofs should look like; in particular, you should include about the same
amount of detail.

Numbers. We will work with the following sets of numbers.

N = {1, 2, 3, 4, . . . }, the set of natural numbers.

Z = {0,±1,±2,±3, . . . } = {· · · − 2,−1, 0, 1, 2, 3, . . . }, the set of integers.

Q = {p/q | p ∈ Z, q ∈ N}, the set of rational numbers.

R, the set of real numbers.

A real number is a number that can be written as a decimal (possibly in-
finite). Recall that a real number is rational (i.e., can be written as the
quotient of two integers) if and only if it has a decimal expansion that either
terminates or repeats. Real numbers that are not rational are irrational.

Assumptions. We will assume the basic facts regarding the operations of
addition and multiplication. In particular, both operations are associative
((a+b)+c = a+(b+c) and (ab)c = a(bc)) and commutative (a+b = b+a and
ab = ba) and the distributive law holds (a(b + c) = ab + ac). There exists
an identity for addition (0) and an identity for multiplicaton (1). Every
number has an additive inverse (the inverse of a is −a) and every nonzero
real number has a multiplicative inverse (the inverse of a is 1/a).

We will assume three special additional facts about integers.

Positivity Axiom. If m and n are natural numbers, then m+n and m ·n
are also natural numbers.

Closure Axiom. If m and n are integers, then m + n and m · n are also
integers.

Definition. An integer n is odd if there exists an integer k such that n =
2k + 1. An integer n is even if there exists an integer k such that n = 2k.

Parity Axiom. Every integer is either even or odd; no integer is both even
and odd.

Sample proofs.

Theorem 1.5.1. The square of an odd number is odd.

Restatement. If n is odd, then n2 is odd.

Proof. This is a direct proof. Let n be odd (hypothesis). By definition of
odd, there is an integer k such that n = 2k + 1. Thus

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.
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Since 2k2 + 2k is an integer (by the Closure Axiom), this shows that n2 is
odd (by the definition of odd). �

Corollary 1.5.2. If n2 is even, then n is even.

Proof. Let n be an integer such that n2 is even (hypothesis). By the Parity
Axiom this means that n2 is not odd. Thus the contrapositive of Theo-
rem 1.5.1 shows that n is not odd. Applying the Parity Axiom again yields
the desired conclusion. �

Theorem 1.5.3. The sum of two rational numbers is rational.

Restatement. If a and b are rational numbers, then a + b is a rational
number.

Proof. This is a direct proof. Let a and b be rational numbers (hypothesis).
By definition of rational number, this means that there are integers p, q, r,
and s such that a = p/q and b = r/s. Thus

a+ b =
p

q
+
r

s
=
ps+ qr

qs
.

Since ps + qr and qs are integers (by the Closure Axiom), this shows that
a+ b is rational. �

Theorem 1.5.4. The sum of a rational number and an irrational number
is irrational.

Restatement. If a is a rational number and b is an irrational number, then
a+ b is irrational.

Restatement. Assume a is rational. If b is irrational, then a + b is irra-
tional.

Lemma. If a is a rational number, then −a is rational.

Proof. This is a direct proof. Let a be a rational number (hypothesis). By
definition of rational number, there exist integers p and q such that a = p/q.
Since the product of two integers is an integer, −p is also an integer. Hence
−a = (−p)/q is rational. �

Proof of Theorem 1.5.4. This is a proof by contraposition. We will as-
sume that a is rational and show that if a+ b is rational, then b is rational.

Assume a is rational (hypothesis). By the lemma we know that −a is ratio-
nal. Thus Theorem 1.5.3 shows that b = (a+ b) + (−a) is rational. �

Theorem 1.5.5. The product of a nonzero rational number and an irra-
tional number is irrational
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Restatement. If x is rational, x 6= 0, and y is irrational, then xy is irra-
tional.

Proof. This is a proof by contradiction. We will assume x is a nonzero
rational number (hypothesis), y is an irrational number (hypothesis), and
that xy is rational (RAA hypothesis). From these hypotheses we will derive
a contradiction.

Since x and xy are assumed rational, the definition of rational number allows
us to write x = p/q and xy = m/n for some p, q,m, n ∈ Z with p 6= 0. Thus

y =

(
1

x

)
(xy) =

(
q

p

)(m
n

)
=
qm

pn
.

But this contradicts the assumption that y is irrational, so we must reject
the RAA hypothesis and the proof is complete. �

Theorem 1.5.6.
√

2 is irrational.

Restatement. If x2 = 2, then x is irrational.

Note. This theorem is known as the Theorem of Theaetetus because it
is discussed by Socrates and Theaetetus in Plato’s dialog Theaetetus—see
http://www.cut-the-knot.org/proofs/sq root.shtml.

Proof. This is a proof by contradiction. We will assume x is a number such
that x2 = 2 (hypothesis) and also suppose that x is rational (RAA hypoth-
esis). We will show that these combined hypotheses lead to a contradiction.

Since x is rational, x can be written as p/q, where p and q are both integers.
Reduce the fraction p/q to lowest terms. Then p and q have no common
factor; in particular, p and q are not both even. Since p2 = 2q2, p2 must be
even (Corollary 1.5.1) and so p is even. Write p = 2s. Then (2s)2 = 2q2,
so q2 = 2s2 and we see that q is even as well (Corollary 1.5.1 again). We
have now arrived at a contradiction: we started with p and q not both even
and have concluded that they are both even. This contradiction forces us to
reject the hypothesis that x is rational and conclude that x is irrational. �

The next proof is logically correct, but is considered to be bad form. The
proof is really a direct proof of the contrapositive with the structure of a
proof by contradiction built around it.

Theorem 1.5.7. If n2 is odd, then n is odd.

First proof of Theorem 1.5.7. This is a proof by contradiction. Assume
that n2 is odd and also make the RAA hypothesis that n is even. We will
see that this hypothesis leads to a contradiction.

Since n is even, there exists an integer k such that n = 2k. Thus n2 =
(2k)2 = 2(2k2), which is even. This contradicts the assumption that n2 is
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odd. Thus we reject the hypothesis that n is even and conclude that n is
odd. �

While the proof above is strictly correct, it is considered to be an example
of sloppy thinking. It is better to use a simpler, more direct argument
whenever possible. The following is a direct proof of the contrapositive; i.e.,
it shows that if n is not odd, then n2 is not odd.

Second proof of Theorem 1.5.7. This is a proof by contraposition. Sup-
pose n is not odd. Then n is even by the Parity Axiom. Thus there exists an
integer k such that n = 2k (definition of even). Thus n2 = (2k)2 = 2(2k2),
which is even. By the Parity Axiom again, this means that n2 is not odd
and the proof is complete. �

Exercises 1.5

1. Prove: The sum of two odd numbers is even.

2. Prove: The sum of an even and an odd number is odd.

3. Prove: The product of two odd numbers is odd.

4. Prove: The product of an even and an odd number is even.

5. Prove: If the product of two numbers is even, then at least one of
the two numbers is even.

6. Prove: n is odd if and only if n2 is odd.

7. Prove or disprove: The product of two rational numbers is a ratio-
nal number.

8. Prove or disprove: The product of two irrational numbers is an
irrational number.

9. Prove or disprove: The reciprocal of an irrational number is an
irrational number.

10. Prove: n is even if and only if 7n+ 3 is odd.

11. Prove: Every odd number is the difference between two perfect
squares.

12. Prove: There is no positive perfect cube less than 500 that is the
sum of two positive perfect cubes.





Chapter 2

Sets, functions, and
cardinality

2.1. Sets

A set is an unordered collection of objects. The objects in the set are called
the elements of the set. Write a ∈ A to indicate that a is an element
of A. Two sets are equal, written A = B, if they contain exactly the same
elements. Set A is a subset of B, written A ⊆ B, if every element of A is
an element of B. We say that A is a proper subset of B, written A ⊂ B, if
A ⊆ B but A 6= B.

The subset relationship can also be described in symbols.

A ⊆ B means (x ∈ A)→ (x ∈ B).

A = B means A ⊆ B and B ⊆ A.

One important set is the set with no elements in it. This set is called the
empty set or the null set and is written ∅. Notice that ∅ ⊆ S for every set S.

Be sure you distinguish between ∈ and ⊆. (For example, 1 ∈ Z and {1} ⊆ Z,
but {1} /∈ Z.) The distinction between ⊂ and ⊆ is less important.

Two ways to describe a set.

(1) Use a roster; e.g., A = {1, 2,−1, 0, 2,−1, 1, 0}.
(2) Use set builder notation; e.g., A = {n ∈ Z | −1 ≤ n ≤ 2}.

Several ways to make new sets from old.

(1) Power set: P(A) = {S | S ⊆ A}.

17
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(2) Cartesian Product: A×B = {(a, b) | a ∈ A and b ∈ B}.
(3) Union: A ∪B = {x | (x ∈ A) ∨ (x ∈ B)}.
(4) Intersection: A ∩B = {x | (x ∈ A) ∧ (x ∈ B)}.
(5) Set difference: A−B = {x | (x ∈ A) ∧ (x /∈ B)}.
(6) Complement: A = U −A = {x | x /∈ A}. (U is the universal set.)

Two sets A and B are said to be disjoint if A ∩B = ∅.

De Morgan’s Laws, v.3.0.

(1) A ∪B = A ∩B.

(2) A ∩B = A ∪B.

Exercises 2.1

1. Make a roster of the elements of these sets.
(a) {x | x is a real number and x2 = 9}
(b) {r | r is a rational number and r2 = 2}
(c) {n | n is a natural number less than 9}

2. Use set builder notation to describe the following sets.
(a) {3, 6, 9, 12, 15}
(b) {−15,−12,−9,−6,−3, 0, 3, 6, 9, 12, 15}
(c) {f, g, h, i, j, k}

3. True or false?
(a) ∅ ∈ {0}
(b) ∅ ⊆ {0}
(c) ∅ ∈ {∅}
(d) ∅ ∈ {{∅}}
(e) ∅ ⊆ {{∅}}
(f) {∅} ∈ {∅}
(g) {∅} ∈ {{∅}}
(h) {∅} ∈ {∅, {∅}}
(i) {∅} ⊆ {{∅}}

4. Let A = {1, 2, 3, 4, 5} and let B = {2, 4, 6}. Make a roster of each
of the following sets.
(a) A ∪B
(b) A ∩B
(c) A−B
(d) B −A
(e) A×B
(f) P(B)
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2.2. Functions

Definition. A function f consists of two sets A and B, called the domain
and range of f , and a rule that assigns to each element a ∈ A a unique
element f(a) ∈ B.

Write f : A→ B to indicate that f is a function with domain A and range B.
We usually say “f is a function from A to B.”

In calculus the “rule” in the function is almost always described by an equa-
tion or formula of some kind. That need not be the case in other parts of
mathematics (such as this course).

Example 2.2.1. Let A = {0, 2, 4} and let B = {3, 7, 11}. We will give
several different descriptions of a rule that assigns elements of B to elements
of A. All of these ways of describing the rule result in the same assignment
of an element of B to a given element of A, so they all define the same
function.

(1) One way to describe the rule is to simply list all the function values.
Define f : A→ B by f(0) = 3, f(2) = 3, and f(4) = 11.

(2) A second way is to use a diagram. Define f : A → B by the
following diagram.

ƒ ƒ ƒ

0      2       4

3       7     11

(3) A third way is to use a formula. Define f : A → B by f(n) =
n2 − 2n+ 3.

(4) The formula f(k) = 2k2 − 2k + 3 works just as well.

Example 2.2.2. If A is any set, the identity function ιA : A→ A is defined
by ιA(a) = a for every a ∈ A.

Definition. A function f : A→ B is one-to-one if

(a1 6= a2)→ (f(a1) 6= f(a2)).

One-to-one is often shortened to 1-1. It is logically equivalent (contraposi-
tive) to say f : A → B is one-to-one if (f(a1) = f(a2)) → (a1 = a2). This
second version of the definition is often easier to work with.

Example 2.2.3. The function f : N → N defined by f(n) = |n| is one-to-
one. The function g : Z→ Z defined by g(n) = |n| is not one-to-one.
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Definition. A function f : A→ B is onto if

∀ b ∈ B ∃ a ∈ A (f(a) = b).

Example 2.2.4. The function f : N → N defined by f(n) = |n| is onto.
The function g : Z→ Z defined by g(n) = |n| is not onto.

Example 2.2.5. The function of Example 2.2.1 is neither one-to-one nor
onto.

Example 2.2.6. If A ⊆ B, the function I : A → B defined by I(a) = a
is called the inclusion function. An inclusion function is not onto unless
A = B. By contrast, every identity function is onto.

Definition. A one-to-one correspondence is a function that is both one-to-
one and onto.

Example 2.2.7. Prove that f : Z → Z defined by f(n) = 9 − n is a
one-to-one correspondence.

Proof. First we prove that f is one-to-one. We will use the second version
of the definition of one-to-one. Assume n1 and n2 are two integers such that
f(n1) = f(n2) (hypothesis). Then 9 − n1 = 9 − n2, so −n1 = −n2 and
n1 = n2 (algebra). Thus f is one-to-one.

Next we prove that f is onto. We must show that ∀m ∈ Z∃n ∈ Z such that
f(n) = m (definition). Let m ∈ Z (hypothesis). Define n = 9 −m. Then
f(n) = 9 − n = 9 − (9 −m) = m. Therefore f is onto and we have proved
that f is a one-to-one correspondence. �

Definition. If f : A → B and g : B → C, the composite function g ◦ f :
A→ C is defined by g ◦ f(a) = g(f(a)). We call g ◦ f the composition of f
and g.

Definition. An inverse for f : A → B is a function g : B → A such that
f ◦ g = ιB and g ◦f = ιA. A function that has an inverse is called invertible.

Theorem 2.2.8. A function is invertible if and only if it is a one-to-one
correspondence. The inverse of an invertible function is unique.

Exercises 2.2

1. Determine whether f : Z→ Z is onto if f is defined by
(a) f(n) = n− 5.
(b) f(n) = 5n− 1.
(c) f(n) = n3.
(d) f(n) = n2 + 5.

2. Determine whether each of the functions in the preceding exercise
is one-to-one.
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3. Determine whether f : Z × Z → Z defined by f(m,n) = n + m is
onto. Is f one-to-one? Explain.

4. Find a function f : {1, 3, 5} → {2, 4, 6, 8} that is one-to-one. Is
there a function f : {1, 3, 5} → {2, 4, 6, 8} that is onto? Explain.

5. Find a function f : {1, 3, 5, 7} → {2, 4, 6} that is onto. Is there a
function f : {1, 3, 5, 7} → {2, 4, 6} that is one-to-one? Explain.

6. Is there a function f : {1, 3, 5, 7} → {2, 4, 6, 8} that is onto but
not one-to-one? Explain. Is there a function f : {1, 3, 5, 7} →
{2, 4, 6, 8} that is one-to-one but not onto? Explain.

7. Find functions f : N→ N that have the following properties.
(a) f is onto, but not one-to-one.
(b) f is one-to-one, but not onto.
(c) f is neither one-to-one nor onto.
(d) f is a one-to-one correspondence.

8. Prove that f : Q → Q defined by f(r) = 3r − 7 is a one-to-one
correspondence.

9. Is f : Z → Z defined by f(n) = 3n − 7 (same formula as in the
preceding exercise) one-to-one? Is it onto? Explain.

10. Prove that f : (0, 1)→ (1,∞) defined by f(x) = 1/x is a one-to-one
correspondence.

2.3. The cardinality of a set

The cardinality of a set is the number of elements in the set. We know how
to count the elements in a finite sets, but it is not so obvious how to do
that for an infinite set. In this section we will learn to distinguish different
sizes of infinite sets. All the results in the section are due to the German
mathematician Georg Cantor (1845–1918).

We begin by giving a rigorous definition of cardinality for finite sets.

Definition. The empty set has cardinality 0. A set S is said to have cardi-
nality n, where n is a natural number, if there is a one-to-one correspondence
f : S → {1, 2, . . . , n}.

Definition. A finite set is a set that is either empty or has cardinality n
for some natural number n. A set that is not finite is said to be infinite.

The cardinality of S is denoted either |S| or cardS.

Example 2.3.1. |∅| = 0. |P(∅)| = 1. |{1, 2, 0, 1, 0, 3, 2, 1}| = 4.

Example 2.3.2. N = {1, 2, 3, 4, 5, . . . }, the set of positive integers, is infi-
nite.
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Example 2.3.3. If A and B are finite sets, then |P(A)| = 2|A| and |A×B| =
|A| · |B|.

It was relatively easy to define the cardinality of a finite set, but we can’t do
the same thing for infinite sets because we do not have words for different
infinities. Just saying “N is infinite” or “R is infinite” is too vague—we
want to distinguish different infinite cardinalities. Instead of trying to give a
definition of the cardinality of an arbitrary set, we take an indirect approach
and define what it means for two sets to have the same cardinality.

Definition. Two sets A and B have the same cardinality, written |A| = |B|,
if there exists a one-to-one correspondence f : A→ B.

Definition. A set is countably infinite if it has the same cardinality as N. A
set is countable if it is either finite or countably infinite. A set is uncountable
if it is not countable.

Notation. The symbol ℵ0 is used to denote the cardinality of N. Thus the
assertion |S| = ℵ0 means that S is countably infinite which, in turn, means
that there is a one-to-one correspondence S → N.

There is a one-to-one correspondence f : S → N if and only if the elements
of S can be listed in a sequence f(1)f(2)f(3)f(4)f(5) . . . . Hence we can
take as an informal definition that a set is countably infinite if the elements
of the set can be listed in an infinite sequence. The elements of a sequence
can be counted off, one at a time. This is the origin of the term “countable.”

Example 2.3.4. The set of even numbers E = {2, 4, 6, 8, . . . } is countably
infinite; i.e., |E| = ℵ0. In order to prove this assertion we must find a one-
to-one correspondence from N to E. Define the function f : N → E by
f(n) = 2n. That f is a one-to-one correspondence can be proved rigorously
using a proof like that in Example 2.2.7 or can be demonstrated informally
by inspection of the following diagram. Each number in the top row is
matched with exactly one number in the second row and each number in
the second row is matched with exactly one number in the top row.

ƒ

1       2       3       4       5       6       7       8

2       4       6       8      10     12     14     16

. . .

. . .

. . .

Example 2.3.5. The set B = {100, 101, 102, 103, . . . } is countably infinite.
Again, in order to demonstrate this we must produce a one-to-one corre-
spondence g : N → B. Either the formula g(n) = n + 99 or the diagram
below can be used.
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g

1       2       3       4       5       6       7       8

100   101   102   103   104   105   106   107

. . .

. . .

. . .

Example 2.3.6. The set of all integers, Z, is countably infinite. Once again
this is demonstrated by showing the existence of a one-to-one correspondence
h : N → Z. It is a little tricker than the previous examples because Z is
infinite in two directions. But alternating the positive and negative integers
allows us to put the integers in a sequence. The following diagram illustrated
the construction of a one-to-one correspondence.

h

1       2       3       4       5       6       7       8

0       1      -1       2      -2       3      -3      4

. . .

. . .

. . .

We can also define h by means of a formula.

h(x) =

{
n
2 if n is even

−
(
n−1

2

)
if n is odd

Theorem 2.3.7 (Cantor). The set of rational numbers is countable.

Sketch of the proof. We first show that the set of positive rational num-
bers, which we denote Q+, is countable. Arrange the positive rational num-
bers in a two-dimensional array as indicated in Figure 2.1. The first row
contains all positive fractions that have numerator 1, the second row con-
tains all the positive fractions that have numerator 2, and so on. Every
positive rational number is included in the table; in fact, every positive ra-
tional number is included many times since we have listed all the unreduced
fractions.

We want to list the elements of Q+ in a sequence. If we tried to list them one
row at a time or one column at a time, we would never get to the numbers
in the next row or column. But Figure 2.1 shows how to follow a zig-zag
pattern along the diagonals to list all of the positive rationals in a single
sequence. In order to construct a one-to-one correspondence, we list the
positive rationals in this order, but we omit any rational that is equal to one
that was already listed. The result is that only the fractions that are circled
in Figure 2.1 are listed.

A similar proof shows that the set of negative rationals is countable. In
order to list the entire set of rationals in a sequence, we first list 0, then
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Figure 2.1. A one-to-one correspondence between N and Q+

the first positive rational, then the first negative rational, then the second
positive rational, then the second negative rational, then the third positive
rational, and so on. �

The examples presented so far might give the impression that all infinite
sets are countable. But that is not the case. We now prove that there are
uncountable sets. In particular, we will show that the set of real numbers is
uncountable. We first present the basic argument in the context of sequences
of 0’s and 1’s, where it is cleanest and clearest.

We will use the symbol S to denote the set of infinite sequences of 0’s and
1’s. An element of S is a sequence like 001100110011 · · · .

Theorem 2.3.8 (Cantor). The set S is uncountable.

Proof. The conclusion is negative; it says that S is not countable. The set
is clearly infinite, so this means we must show that there is no one-to-one
correspondence N → S . Specifically, what we will show is that there is no
onto function N→ S . Here is a restatement of what we intend to prove: If
f : N → S is any function whatsoever, then there exists a sequence s ∈ S
such that s 6= f(n) for any n.
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Assume f : N → S is a function (hypothesis). For each n ∈ N, f(n) is a
sequence of 0’s and 1’s. We will denote the kth term in f(n) by bnk. Thus

f(1) = b11b12b13b14b15b16b17b18b19 . . .

f(2) = b21b22b23b24b25b26b27b28b29 . . .

etc. Define s to be the sequence s = c1c2c3c4c5 . . . , where

cn =

{
0 if bnn = 1, and

1 if bnn = 0.

Then s 6= f(n) for any n because the nth term of s is different from the nth
term of f(n). This completes the proof. �

The proof above is known as “Cantor’s diagonal argument.” The reason is
that in order to define s we look at the diagonal entries in the list

f(1) = b11 b12b13b14b15b16b17b18b19 . . .

f(2) = b21 b22 b23b24b25b26b27b28b29 . . .

f(3) = b31b32 b33 b34b35b36b37b38b39 . . .

f(4) = b41b42b43 b44 b45b46b47b48b49 . . .

f(5) = b51b52b53b54 b55 b56b57b58b59 . . .

f(6) = b61b62b63b64b65 b66 b67b68b69 . . .

f(7) = b71b72b73b74b75b76 b77 b78b79 . . .

f(8) = b81b82b83b84b85b86b87 b88 b89 . . .

f(9) = b91b92b93b94b95b96b97b98 b99 . . .

...

The nth term in s is determined by taking the nth term on the diagonal
and changing it from a 1 to a 0 or from a 0 to a 1. This seemingly simple
idea has proved to have a large number of deep and poweful applications.

Corollary 2.3.9 (Cantor’s Power Set Theorem). P(N) is uncountable.

Proof. We will contruct a one-to-one correspondence f : P(N)→ S . Let
A ∈P(N). Define a sequence s = b1b2b3b4b5b6 · · · ∈ S by

bn =

{
1 if n ∈ A, and

0 if n /∈ A
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and define f(A) = s. The verification that this defines a one-to-one corre-
spondence is left as an exercise. �

Corollary 2.3.10 (Cantor). R is uncountable.

Sketch of proof. Any real number can be represented in base two as a
sequence of 0’s and 1’s. Since there are uncountably many sequences, there
are also uncountably many real numbers. �

The last proof is rather sketchy. It can be made precise and rigorous, but
the details are a bit complicated. One complication results from the fact
that base-two representations of real numbers are not unique. The same is
true for decimal representations. For example

1.000000000 · · · = 0.999999999 · · · .

One question Cantor was not able to answer was whether there are subsets
of the real numbers that are uncountable but whose cardinality is different
from that of R.

Definition. Say that |A| < |B| if there exists a one-to-one function f : A→
B but there is no one-to-one and onto function from A to B.

In this terminology, Corollary 2.3.9 asserts that |N| < |P(N)|.
Continuum Hypothesis. There is no set S such that

|N| < |S| < |P(N)|.

Cantor was never able to prove his Continuum Hypothesis (CH). In 1940,
Kurt Gödel proved that it is consistent with the axioms of set theory for CH
to be true. In 1963 Paul Cohen proved that it is consistent with the axioms
of set theory for CH to be false. Thus it is not possible to decide whether
CH is true of false using the axioms of set theory; CH is independent of the
axioms. Kurt Gödel had proved in 1931 that such undecidable statements
must always exist in any axiomatic system, but it was still surprising that
such a seemingly simple statement would turn out to be undecidable.

The smallest infinite cardinal is named ℵ0 and ℵ1 is the name for the next
largest cardinal number. The cardinal number of the real numbers is c (for
continuum). Another way to state the Continuum Hypothesis is to assert
that c = ℵ1.

The following generalization of the Power Set Theorem shows that there is
no limit to how large a cardinal number can be. There are infinitely many
different sizes of infinity and there is no largest infinity!

Theorem 2.3.11 (Generalized Power Set Theorem). If S is any set, then
|S| < |P(S)|.
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Proof. The function g : S → P(S) defined by g(a) = {a} is one-to-one.
Let f : S → P(S) be any function. We will use a proof by contradiction
to show that f is not onto. Assume f is onto (RAA hypothesis). Define
A = {x ∈ S | x /∈ f(x)}. Since f is onto, there exists a ∈ S such that
f(a) = A. If a ∈ A, then a /∈ A (definition of A). If a /∈ A, then a /∈ f(a)
(because A = f(a)), so a ∈ A (definition of A). Since either a ∈ A or a /∈ A,
we have a contradiction. �

Generalized Continuum Hypothesis. If A is any set, then there is no
set S such that |A| < |S| < |P(A)|.

Exercises 2.3

1. Let S = {0, 1, 2}. What is the cardinality of P(P(S))?

2. What is the cardinality of the set of strings of 0’s and 1’s that have
length exactly n? What is the cardinality of the set of strings of
0’s and 1’s that have length less than or equal to n?

3. Determine whether each of the following sets is countable or un-
countable. For those that are countable, describe a specific one-to-
one correspondence between the set and N.
(a) The negative integers.
(b) The integers that are multiples of 10.
(c) The integers larger than 1,000,000.
(d) The real numbers between 0 and 1.
(e) The rational numbers between 0 and 1.
(f) N× N.
(g) The set of all finite strings of 0’s and 1’s.

4. The Hilbert Hotel has ℵ0 rooms. On a certain night all of the rooms
are occupied, but David Hilbert, the manager, does not turn on the
“No Vacancy” sign.
(a) Suppose a new guest arrives. How can Mr. Hilbert move his

current guests around to make room for the new arrival?
(b) Suppose ℵ0 new guests arrive. How can Mr. Hilbert move his

current guests around to make room for all the new arrivals?
(c) Suppose ℵ0 buses arrive, each carrying ℵ0 people who want

rooms. Can Mr. Hilbert make room for all of them? Explain.

5. Let B = {8, 16, 32, 64, 128, 256, 512, . . . }. Find a formula for a spe-
cific one-to-one correspondence N→ B. Give a rigorous proof (like
that in Example 2.2.7) that the function you have found is a one-
to-one correspondence.

6. Find a systematic way to list all the rational numbers between 0
and 1 in a sequence.
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7. Prove that the function f : P(N) → S . defined in the proof of
Corollary 2.3.9 is a one-to-one correspondence.

8. [Optional Extra Credit Challenge] Find a one-to-one corre-
spondence from the half open interval [0, 1) to the closed interval
[0, 1]. The two intervals are intervals of real numbers; for example,

[0, 1) = {x ∈ R | 0 ≤ x < 1}.



Chapter 3

Topics in Elementary
Number Theory

In mathematics “number theory” refers to the arithmetic of integers.

3.1. Division of integers

We begin by revisiting a topic you studied in middle school: division of
whole numbers.

The Division Algorithm. If a ∈ Z and d ∈ N, then there exist unique
integers q and r such that a = dq + r and 0 ≤ r < d.

Terminology. In the Division Algorithm, d is the divisor, q is the quotient,
and r is the remainder.

Notation. q = a div d and r = a mod d.

Example. 105 mod 9 = 6. −105 mod 9 = 3.

Definition. Let a, b ∈ Z with a 6= 0. We say that a divides b, written a | b,
provided there exists c ∈ Z such that b = ac. If a | b, then a is a factor of b,
or a is a divisor of b, or b is a multiple of a.

Observation. b | a if and only if the remainder when a is divided by b is 0.
If you want to determine whether b | a, you should divide a by b and check
whether the remainder is 0.

Examples. 7 | 42. 42 - 7. For every a ∈ Z, 1 | a and a | 0.

Theorem 3.1.1 (Properties of “divides.”). Let a, b, and c be integers.

29
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(i) If a | b and b | c, then a | c.
(ii) If a | b and a | c, then a | mb+ nc for every m,n ∈ Z.

Proof. Assume, first, that a | b and b | c (hypothesis). Then there exist
d, e ∈ Z such that b = ad and c = be (definition). Therefore c = be =
(ad)e = a(de), so a | c. This proves (i).

Now assume a | b and a | c (hypothesis). Then there exist d, e ∈ Z such that
b = ad and c = ae (definition). Thereforemb+nc = mad+nae = (md+ne)a,
so a | mb+ nc. This proves (ii). �

Definition. Let a, b ∈ Z. A number d is a common divisor of a and b if
d | a and d | b.

Definition. Assume a, b ∈ Z are not both zero. The greatest common
divisor of a and b, denoted gcd(a, b), is the largest positive integer d such
that d | a and d | b.

The middle school algorithm. To find gcd(a, b).

Step 1: Find all the prime factors of a and all the prime factors of b.

Step 2: For each prime factor that appears in both decompositions,
select the smaller exponent.

Step 3: gcd(a, b) is the product of the primes to the powers selected
in Step 2.

Example. Find gcd(360, 378). First write 360 = 23 · 32 · 51 and 378 =
21 · 33 · 71. Then gcd(360, 378) = 21 · 32 = 18.

The middle school algorithm is not practical for use with large numbers, but
the following algorithm is.

The Euclidean algorithm. To find the greatest common divisor of two
nonnegative integers a and b, not both 0.

Step 0: Relabel, if necessary, so that a ≥ b.
Step 1: If b = 0, then gcd(a, b) = a.

Step 2: If b 6= 0, divide b into a to write a = bq + r where 0 ≤ r < b
(the Division Algorithm).

Step 3: By the lemma below, gcd(a, b) = gcd(b, r). Since r < b ≤ a,
we have reduced the problem to that of finding the greatest common
divisor of strictly smaller numbers.

Step 4: Continue until r = 0.

Step 5: gcd(a, b) is the last nonzero remainder.
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This algorithm is fast and efficient, even for very large numbers. In Chapter 4
we will prove that the number of operations required is O(log b), where b is
the smaller of the two numbers. Specifically, we will prove that the number
of operations required is 5 times the number of decimal digits in b.

Example. Find gcd(378, 360). Divide 360 into 378 to get 378 = 360 · 1 +
18. Divide 18 into 360 to get 360 = 18 · 20 + 0. Then gcd(378, 360) =
gcd(360, 18) = gcd(18, 0) = 18.

The Euclidean Algorithm depends on the following simple lemma.

Lemma. If a = bq + r, then gcd(a, b) = gcd(b, r).

Proof. Suppose d is a common divisor of b and r. Then d divides a by
Theorem 3.1.1(ii). Thus d divides both a and b. Now suppose d′ is a
common divisor of a and b. We can write r = a − bq, so d′ divides r by
Theorem 3.1.1(ii) again. Thus d′ divides both b and r. This means that
(a, b) and (b, r) share the same set of common divisors. As a result they
have the same greatest common divisor. �

In future applications of the greatest common divisor we will need to know
that gcd(a, b) can be written as a combination of a and b as described in the
following theorem.

Theorem 3.1.2. If a, b ∈ N, then there exist s, t ∈ Z such that gcd(a, b) =
sa + tb. Furthermore, gcd(a, b) is the smallest positive integer that can be
written as such a combination.

Proof. The fact that gcd(a, b) can be written this way follows from the fact
that there is an algorithm (The Extended Euclidean Algorithm, below) that
can be used to determine s and t. Let c be the smallest positive integer that
such that c = sa + tb. Then any common divisor of a and b also divides c
by Theorem 3.1.1(ii). Thus any c that can be written in the form sa+ tb is
a multiple of gcd(a, b), which makes gcd(a, b) the smallest possible. �

Extended Euclidean Algorithm. To find s and t such that gcd(a, b) =
sa+ tb.

Step 1: Apply the Euclidean algorithm to a and b, writing down the
resulting equations in order.

Step 2: “Solve” each of the equations for the remainder.

Step 3: The gcd is the last nonzero remainder; start with the equa-
tion containing it and work back towards the first equation, replac-
ing each remainder with its equivalent in the preceding equation.
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Example. Express gcd(456, 111) as a combination of 456 and 111.

456 = 4 · 111 + 12 so 12 = 1 · 456− 4 · 111

111 = 9 · 12 + 3 so 3 = 1 · 111− 9 · 12

12 = 4 · 3 + 0.

Since 3 is the last nonzero remainder, it is the gcd. Use the last equation
with a nonzero remainder to express 3 as a combination of 11 and 12, and
then work up through the previous equations to express 3 as a combination
of progressively large remainders.

3 = 111− 9 · 12

= 111− 9 · (456− 4 · 111)

= 1 · 111− 9 · 456 + 36 · 111

= 37 · 111− 9 · 456.

We will see that the Extended Euclidean Algorithm is a useful tool in many
calculations. But it also has important theoretical consequences. The follow-
ing corollary to Theorem 3.1.2 is an example of one of those consequences.

Corollary 3.1.3. If gcd(a, b) = 1 and a | bc, then a | c.

Proof. This is a direct proof. Assume gcd(a, b) = 1 and a | bc (hypotheses).
The Extended Euclidean Algorithm allows us to write 1 = sa + tb and the
definition of “divides” implies that there exists d ∈ Z such that bc = ad.
Thus

c = sac+ tbc = sac+ tad = a(sc+ td),

which shows that a | c. �

Exercises 3.1

1. True or False?
(a) 17 | 68
(b) 68 | 17
(c) 17 | 1
(d) 1 | 17
(e) 17 | 0
(f) 0 | 17

2. Evaluate.
(a) 158 mod 7.
(b) −97 mod 11.
(c) 155 mod 19.
(d) −221 mod 23.
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3. Which of the following statements is true?
• If 3 | mn, then either 3 | m or 3 | n.
• If 6 | mn, then either 6 | m or 6 | n.

What explains the difference?

4. Prove: If a ∈ Z, then a | 0.

5. For each of the following pairs (a, b), use the Euclidean Algorithm
to find gcd(a, b) and then use the Extended Euclidean Algorithm
to find s, t ∈ Z such that gcd(a, b) = sa+ tb.
(a) (252, 356).
(b) (144, 89).
(c) (314, 159).
(d) (1001, 100001).
(e) (4144, 7696).

3.2. Modular arithmetic

Modular arithmetic is the arithmetic of remainders. In this context, the
number we are dividing by is called the modulus and is usually denoted
by m. There are two ways in which to define equivalence modulo m: we can
either say that two numbers are equivalent modulo m if their difference is
divisible by m or we can say that they are equivalent modulo m if they give
the same remainder when divided by m. We make the first definition the
official definition and then prove that the second is equivalent.

Definition. Say that a is congruent to b modulo m, written a ≡ b (mod m),
if m | b− a.

Theorem 3.2.1. a ≡ b (mod m) if and only if a mod m = b mod m.

Proof. Assume, first, that a ≡ b (mod m) (hypothesis). Then m | b − a
(definition). Use the Division Algorithm to write a = mq1+r1 and b = mq2+
r2, where 0 ≤ r1 < m and 0 ≤ r2 < m. Then b− a = m(q2− q1) + (r2− r1),
so m | r2 − r1 (Theorem 3.1.1, Part (ii)). But the fact that 0 ≤ r1 < m
and 0 ≤ r2 < m means that |r2 − r1| < m (algebra), so we can conclude
r2 − r1 = 0. Since r1 = a mod m and r2 = b mod m, this completes the
first half of the proof.

Now assume a mod m = b mod m. Then a = mq1 + r and b = mq2 + r
(same r), so b− a = m(q2 − q1) and we see that m | b− a. �

Theorem 3.2.2. If a ≡ b (mod m) and c ≡ d (mod m), then

a+ c ≡ b+ d (mod m) and ac ≡ bd (mod m).

Theorem 3.2.2 justifies doing arithmetic modulo m.
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Proof. Assume m | b − a and m | d − c (hypothesis). We must show that
m | (b+d)−(a+c) and m | bd−ac. Since (b+d)−(a+c) = (b−a)+(d−c), the
fact that m | (b+ d)− (a+ c) follows directly from Theorem 3.1.1 Part (ii).
Now bd− ac = bd− ad+ ad− ac = d(b− a) + a(d− c), so m | bd− ac by the
same theorem. �

Definition. A linear congruence is a congruence of the form ax ≡ b (modm).
The constants a, b, and m are given; the problem is to find all integers x for
which the equivalence holds.

Theorem 3.2.3. The linear congruence ax ≡ b (mod m) has a solution if
and only if gcd(a,m) divides b. The number of solutions that are different
modulo m is exactly gcd(a,m).

Corollary 3.2.4. The congruence ax ≡ b (mod m) has a unique solution
for every b if and only if gcd(a,m) = 1.

Note. In the statement above, “unique” means “unique modulo m.” In
other words, there is exactly one solution x that satisfies 0 ≤ x < m.

Algorithm. To solve the linear congruence ax ≡ b (mod m).

Step 0: Find d = gcd(a,m). If d | b, then define a′ = a/d, b′ = b/d,
and m′ = m/d. It will then be the case that gcd(a′,m′) = 1.

Step 1: Use the Extended Euclidean Algorithm to find s, t ∈ Z such
that 1 = sa′ + tm′. Observe that s is a solution to the congruence
a′s ≡ 1 (mod m).

Step 2: Multiply by b′ to obtain a preliminary solution z = b′s to
the congruence a′x ≡ b′ (mod m′).

Step 3: Reduce modulo m′ to find the smallest nonnegative solution
x = z mod m′.

Step 4: Add multiples of m′ to x to find the other solutions.

Example 3.2.5. Consider 23x ≡ 5 (mod 120). Since gcd(23, 120) = 1, this
problem has a unique solution. Use the Extended Euclidean Algorithm to
write 1 = 47·23−9·120. From that equation we see that 23·47 ≡ 1 (mod 120).
Multiply both sides by 47 to obtain 23 · 47 · 5 ≡ 1 · 5 (mod 120). Thus
x = 47 · 5 = 235 is a solution. Reduce modulo 120 to find x = 115.

Definition. An integer c such that ac ≡ 1 (mod m) is called an inverse of
a modulo m.

Example 3.2.6. Another way to arrive at the solution in Example 3.2.5 is to
observe that the equation 1 = 47·23−9·120 shows that 47·23 ≡ 1 (mod 120),
so 47 is the inverse of 23 modulo 120. Thus we can multiply both sides of
the original congruence by 47 to get x ≡ 235 (mod 120).
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Example 3.2.7. Consider 36x ≡ 5 (mod 120). Since gcd(36, 120) = 12 and
12 does not divide 5, this congruence has no solutions.

Example 3.2.8. Consider 36x ≡ 24 (mod 120). Since 24 is divisible by
12 = gcd(36, 120), this congruence has solutions. (In fact it has 12 different
solutions modulo 120.) Divide through by 12 to get the related congruence
3x ≡ 2 (mod 10). Since 1 = 10 − 3 · 3, x = −3 is an inverse for 3 modulo
10. Thus x = −6 is a solution to 3x ≡ 2 (mod 10). Add 10 to give
x = 4. This is one solution to the original problem. The others are obtained
by adding multiples of 10. So the complete solution set (modulo 120) is
{4, 14, 24, 34, 44, 54, 64, 74, 84, 94, 104, 114}.

The kind of problem illustrated in the next example leads to a system of
linear congruences

Example 3.2.9. In the first century A.D., the Chinese mathematician Sun-
Tsu posed the following problem: There are certain things whose number is
unknown. When divided by 3, the remainder is 2; when divided by 5, the
remainder is 3; when divided by 7, the remainder is 2. What is the number
of things?

Chinese Remainder Theorem. If m1,m2, . . . ,mn are pairwise relatively
prime and a1, a2, . . . , an are arbitrary, then the system

x ≡ a1 (mod m1)
x ≡ a2 (mod m2)

...
x ≡ an (mod mn)

has a unique solution modulo m = m1m2 . . .mn.

Algorithm. To solve a system of linear congruences.

Step 1: Define Mk = m/mk for each k. Observe that the hypotheses
of the Chinese Remainder Theorem imply that gcd(Mk,mk) = 1.

Step 2: For each k, find a solution yk to Mkyk ≡ 1 (mod mk).

Step 3: A solution to the system is x = a1M1y1 + a2M2y2 + · · · +
anMnyn.

Step 4: Reduce modulo m to find the “best” solution.

Example 3.2.10. The problem in Example 3.2.9 is to solve the following
system of congruences:

x ≡ 2 (mod 3)
x ≡ 3 (mod 5)
x ≡ 2 (mod 7)
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Thus m = 105,M1 = 35,M2 = 2, and M3 = 15. Solve each Mkyk ≡
1 (mod mk) to obtain y1 = 2, y2 = 1, and y3 = 1. Thus the solution given
by Step 3 of the algorithm is x = 233. This answer should be reduced
modulo 105, which gives x = 23.

The final theorem in our study of modular arithmetic is an important in-
gredient in the public key cryptography that will be studied later in the
chapter. It uses the definition of prime number, so we state that first.

Definition. A prime number is an integer p > 1 whose only positive divisors
are p and 1. A composite number is an integer n such that n > 1 and n is
not prime. Two integers a and b are relatively prime if gcd(a, b) = 1.

Fermat’s Little Theorem. If p is prime and a is a positive integer, then

ap ≡ a (mod p).

Corollary. If p is prime and p does not divide a, then

ap−1 ≡ 1 (mod p).

We will prove Fermat’s Little Theorem in the next chapter when we cover
mathematical induction. If gcd(a, p) = 1, then a has an inverse modulo p;
multiply both sides of the congruence in Fermat’s Little Theorem to obtain
the corollary.

Exercises 3.2

1. Find all solutions to the following linear congruences.
(a) 4x ≡ 5 (mod 8).
(b) 2x ≡ 7 (mod 17).
(c) 8x ≡ 11 (mod 35).
(d) 6x ≡ 9 (mod 75).
(e) 7x ≡ 13 (mod 100).
(f) 49x ≡ 4000 (mod 999).
(g) 50x ≡ 65 (mod 105).

2. Verify that 937 is the inverse of 13 modulo 2436.

3. Find the inverse of 7 modulo 26.

4. Find the inverse of 4 modulo 9.

5. Which of the numbers 1, 2, 3, . . . , 10 has an inverse modulo 11?

6. Which of the numbers 1, 2, 3, . . . , 11 has an inverse modulo 12?
Find the inverse in case it exists.

7. Prove: If n is an odd positive integer, then n2 ≡ 1 (mod 8).

8. Use Fermat’s Little Theorem to compute 3302 mod 5, 3302 mod 7,
and 5203 mod 7.
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3.3. Prime numbers

The following fundamentally important theorem will be proved in the next
chapter. We will assume it without proof for now.

The Fundamental Theorem of Arithmetic. Every natural number
greater than 1 either is prime or can be written as a product of prime
numbers. The prime factorization is unique, except for the order of the
factors.

Corollary. Every natural number greater than 1 is divisible by at least one
prime number.

The corollary is used to prove a classic theorem of Euclid.1

Euclid’s Theorem. There are infinitely many prime numbers.

This is an example of a theorem that is stated in such a way that it does
not appear to have any hypotheses. We will follow Euclid and prove the
theorem by showing that the set of prime numbers is potentially infinite in
the sense that no finite list of numbers can exhaust the set of primes. When
viewed this way, the theorem can be restated in if-then form.

Restatement. If {p1, p2, . . . , pn} is any finite set of prime numbers, then
there is a prime number q such that q 6= pi for any i.

Proof. Let {p1, p2, . . . , pn} be a finite set of prime numbers. Define

M = (p1p2 · · · pn) + 1.

By the corollary to the Fundamental Theorem of Arithmetic, there is a
prime number q such that q | M . None of the primes p1, p2, . . . , pn divides
M (because dividing M by any pi leaves a remainder of 1), so q 6= pi for
any i. �

Remark. The number M in the preceding proof may be a prime number,
but it is not necessarily prime. For example,

M = (2 · 3 · 5 · 7 · 11) + 1 = 2311

is prime while

K = (2 · 3 · 5 · 7 · 11 · 13) + 1 = 30031 = 59 · 509

is composite. �

1Here is what Euclid actually wrote: Prime numbers are more than any assigned multitude
of prime numbers. (Proposition 20 in Book IX of Euclid’s Elements.)
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Euclid’s theorem simply tells us that there is no largest prime number.
We can say quite a bit more about how, on the average, the primes are
distributed among the integers. The following theorem was first proved by
the French mathematician Jacques Hadamard (1865 – 1963).

Definition. For each x ∈ R, define π(x) to be the number of primes less
than or equal to x. The function π is called the prime-counting function.

The Prime Number Theorem. The ratio of π(x) to x/ lnx approaches
1 as x grows large; i.e.,

lim
x→∞

π(x)

x/ lnx
= 1.

Even though we know a lot about how many primes there are, we do not
have any formula that explicitly generates a list of infinitely many primes.
Two attempts in that direction are due to two other French mathematicians,
Pierre de Fermat (1601 – 1665) and Marin Mersenne (1588 – 1648).

Fermat primes. A Fermat prime is a prime number of the form Fn =
2(2n) + 1 for some n ≥ 0. The only known Fermat primes are the ones
Fermat himself found: F0, F1, F2, F3, and F4. �

Mersenne primes. The nth Mersenne number isMn = 2n−1. A Mersenne
prime is a Mersenne number that is prime. For example, M2 = 22 − 1 = 3
and M5 = 25 − 1 = 31 are Mersenne primes while M6 = 26 − 1 = 63 is
a Mersenne number that is not prime. In order for 2n − 1 to be prime, it
is necessary (but not sufficient) that n itself be prime—see Theorem 3.3.1
below.

At present, exactly 48 Mersenne primes are known. The last one was dis-
covered on January 25, 2013, by Curtis Cooper at the University of Central
Missouri. Cooper’s prime is 257,885,161 − 1, a number whose decimal rep-
resentation is 17,425,170 digits long. See http://www.mersenne.org/ for the
latest on the Great Internet Mersenne Prime Search (GIMPS). �

The following theorem explains why the Mersenne numbers are prime can-
didates.

Theorem 3.3.1. If a and n are both greater than or equal to 2 and an − 1
is prime, then a = 2 and n is prime.

Proof. Let a ≥ 2 and n ≥ 2 be two integers such that an − 1 is prime
(hypothesis).

We first give a direct proof that a = 2. Observe that an−1 = (a−1)(an−1 +
an−2 + · · ·+ a+ 1). If an− 1 is prime, then each factor is either 1 or an− 1.
Thus either a− 1 = 1 or a− 1 = an − 1. But the fact that a ≥ 2 and n ≥ 2
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implies an > a and so a− 1 6= an− 1. Hence we must have a− 1 = 1, which
implies a = 2.

Next we use a proof by contraposition to show that n is prime. Suppose n
is not prime. Then n = rs for some r, s ∈ N. Hence 2n − 1 = 2rs − 1 =
(2r − 1)(2r(s−1) + 2r(s−2) + . . . 2r + 1). This proves the contrapositive of the
second assertion. �

Exercises 3.3

1. Find the prime factorization of each of the following.
(a) 88
(b) 126
(c) 204
(d) 1001
(e) 1111
(f) 909,090

2. A template for the Sieve of Eratothenes2 is included with these
notes. Cross out all multiples of 2 except 2 itself. Then cross out
all multiples of 3 except 3 itself. (Half of them are already crossed
out.) The next number that is not crossed out is 5. Cross out all
multiples of 5 except 5 itself. Continue this process.
(a) Explain why this process will terminate with multiples of 7.

(Assuming you start with numbers up to 120.)
(b) Explain why all the numbers that were not crossed out must

be prime.
(c) List the first 28 prime numbers.
(d) Prime numbers that differ by 2 are called twin primes. Find

eight pairs of twin primes.3

(e) Find seven consecutive integers that are all composite. (A
prime gap of length seven.)

(f) Goldbach’s Conjecture asserts that every even positive inte-
ger n can be written as the sum of two primes.4 Verify Gold-
bach’s conjecture for n = 120 and n = 130.

3. A positive integer is said to be perfect if it is equal to the sum of
all its positive divisors other than itself.
(a) Verify that 6 and 28 are perfect.

2Named for Eratosthenes of Cyrene, 276 BC – 194 BC.
3It is not known whether there are infinitely many twin primes. The assertion that there are

infinitely many twin primes is known as the Twin Prime Conjecture.
4No proof has been found for Goldbach’s Conjecture.
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(b) Show that 2p−1(2p− 1) is a perfect number whenever 2p− 1 is
a prime.5

[Hint: Use the formula for the sum of a finite geometric se-
quence: 1 + 2 + 4 + . . .+ 2n = 2n+1 − 1.]

4. The Euler φ-function is defined this way: If n ∈ N, φ(n) is the
number of positive integers less than n that are relatively prime
to n. For example, φ(4) = 2 because 1 and 3 are relatively prime
to 4.
(a) Calculate φ(12), φ(13), φ(100), and φ(101).
(b) Explain why n is prime if and only if φ(n) = n− 1.

3.4. RSA public key cryptography

RSA is an algorithm for public-key encryption, which means that the in-
structions for encoding a message may be made public and the decoding
algorithm is still believed to be secure. The algorithm is named for its in-
ventors, Ron Rivest, Adi Shamir, and Len Adleman, who first published it
in 1977 while working at MIT. The algorithm was patented by MIT in 1983,
but the patent expired in 2000. This algorithm was one of the first public
key systems and it is still widely used in electronic commerce.

Key generation.

• Choose two large (e.g., 1024–2048 bit) primes p and q.

• Compute n = pq and m = (p− 1)(q − 1).

• Choose an exponent e such that 1 < e < m and gcd(e,m) = 1.

• Compute d such that 1 < d < m and ed ≡ 1 (mod m).

The primes p and q should be roughly the same size but not so close that
they can be found by trying integers near

√
n. Usually q < p < 2q. The

digits of p and q can be generated randomly and then the numbers checked
for primeness using a probabilistic algorithm based on Fermat’s Little Theo-
rem. There is no definite rule regarding how the encoding number e must be
chosen (except that it must be relatively prime to m), but there are certain
standard values that are commonly used because they speed up the calcu-
lations. The decoding number d is computed using the extended Euclidean
algorithm.

5It is not known whether there are infinitely many perfect numbers. Euler proved that every
even perfect number must have the form 2p−1(2p − 1). Thus there are infinitely many Mersenne

primes if and only if there are infinitely many even perfect numbers. It is not known whether
there are any odd perfect numbers.
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Public key encryption. The public key is the pair (n, e); these numbers
may be published and shared with anyone. A plaintext message consists of
a number P , 0 < P < n. Encode P by

C = P e mod n.

This can be done efficiently using the fast modular exponentiation algorithm
(the square-and-multiply algorithm).

Private key decryption. Your private key is the number d, and it must
be kept secret. The primes p and q must also be kept secret since anyone
who knows p, q, and e can compute d. Although it is less obvious, it is
possible to determine p and q from m and n, so m must also be kept secret.
Decode ciphertext C by

P = Cd mod n.

A simple example. Take p = 67, q = 79, and e = 137. Then n = 5293
and m = 5148. It is not difficult to compute d = 977. To encrypt the
plaintext P = 256, use the formula

C = (256)137 mod 5293 = 4361.

The person receiving our message would decode it by the formula

D = (4361)977 mod 5293 = 256.

Why RSA works. To understand why RSA works we must understand
why

P = (P e)d mod n.

Recall that d was chosen so that ed ≡ 1 (mod m). Thus there exists an
integer k such that de = 1 + km = 1 + k(p− 1)(q − 1). Therefore

(P e)d = P de = P 1+k(p−1)(q−1) = P · P k(p−1)(q−1)

By Fermat’s Little Theorem, P · P p−1 ≡ P (mod p). Applying this result

k(q − 1) times gives P · P k(p−1)(q−1) ≡ P (mod p). In a similar way we see

that P · P k(p−1)(q−1) ≡ P (mod q). Thus x = P and x = P de mod n are
both solutions to the system of congruences

x ≡ P (mod p)

x ≡ P (mod q)

By the Chinese Remainder Theorem the solution is unique modulo pq =
n. Furthermore, both P and (P e)d mod n are smaller than n, so we can
conclude that P = (P e)d mod n. (Note that this last statement is where
we used the fact that the plaintext message is smaller than n.)
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How secure is it? Our belief that RSA is secure is based on two assump-
tions. First, that the only way to determine d from n and e is to factor n,
and, second, that there is no efficient algorithm that will factor n. As far
as we know, both assumptions are correct, but neither of them has been
proved. In 1993, Richard Shor published an algorithm which will factor an
integer in polynomial time on a quantum computer. So the system appears
to be secure for now, but advances in computing might make it insecure in
the future.

The system must be implemented carefully in order to avoid attacks on its
security. For example, simply converting each character in a message to a
number and encoding those numbers would result in a code that is easy to
break. Since the number of characters is small, an attacker could simply use
the public key to encrypt all possible code words and create a look-up table.
This problem is avoided by either converting a relatively large piece of the
message into one number to be encoded or by using some sort of padding
scheme to convert the small numbers into large ones.

Signing a message. One useful feature of RSA is that it allows the person
who knows the private key to prove that without revealing the private key
itself. In order to do so, she can take her signature and encode it using
her decoding algorithm. In other words, she can take her signature S and
encode it as Sd mod n. Then anyone receiving it can decode it using the
public key since Sde = S mod n.

Another example. We can use Mathematica to work with much larger
numbers. This gives us a better sense of how the algorithm works, but
it is still not realistic in the sense that the numbers that are used in real
applications are much larger still.

Let us take p = 461, q = 541, and e = 137. Then n = 249401 and m =
248400. To find d we must solve the congruence 137d ≡ 1 (mod 248400).
The Mathematica command ExtendedGCD[137,248400] returns the result
{1, {65273, -36}}, which means that 1 is the greatest common divisor
and that

1 = 65273 · 137 + (−36) · 248400.

We can conclude that d = 65273.

Each character in the plaintext message can be converted to a three-digit
decimal number by using the ASCII table in Figure 3.1. (A blank space has
ASCII value 32.) We will group two characters together and concatenate
their ASCII values to form a six-digit number (which will be smaller than
249401). These six-digit numbers can therefore be encoded using the RSA
algorithm with n and e as in the previous paragraph.
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Figure 3.1. The ASCII table

Let us say, for example, that we wish to encode the following message: This
is secret. Since there are an odd number of characters, we will add a
blank at the beginning to make the number of characters even and then
group as follows:

T|hi|s |is| s|ec|re|t.

The message is initially encoded as the following string of six-digit numbers:

32084 104105 115032 105115 32115 101099 114101 116046
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To encode these numbers, we apply the formula C = P 137 (mod 249401) to
each of these numbers. This is implemented in Mathematica as, for example,

PowerMod[32084,137,249401].

The coded message that results is

105051 211080 62364 194266 209903 193975 30136 965.

Exercises 3.4

1. Find the decoding number d for each of the following choices of p,
q, and e.
(a) p = 11, q = 13, and e = 47.
(b) p = 11, q = 13, and e = 31. (Is this a good choice for e?)
(c) p = 29, q = 37, and e = 25.
(d) p = 61, q = 53, and e = 17.

2. Use the standard identification of the letters {A,B, . . . , Z} with
the numbers {0, 1, . . . , 25} and the values of p, q, and e in 1(c) to
encode the following words. (Encode a letter at a time.)
(a) HELLO
(b) MATH

3. Use the standard identification of the letters {A,B, . . . , Z} with
the numbers {0, 1, . . . , 25} and the values of p, q, and e in 1(c) to
decode the following messages.
(a) 154 717
(b) 1 48 1051 585

4. Use the standard identification of the letters {A,B, . . . , Z} with the
numbers {0, 1, . . . , 25} and group the letters in pairs. Take p = 43,
q = 59, and e = 13.
(a) Encode INVADE.
(b) Decode 0292 1947 0204.

5. Group the letters in pairs and use their ASCII values, as in the last
example. Take p = 523, q = 653, and e = 1223.
(a) Encode: Mathematics is easy.

(b) Calculate the decoding number d.
(c) Decode: 335097 159164 338325 121324 64392 65037 316351

204876 247037 67441 77287 248806.

List of useful Mathematica commands

• FactorInteger[n] : the prime factors of n and their exponents

• Mod[k, n] : k mod n (the remainder when n is divided by k)
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• GCD[m,n] : the greatest common divisor of m and n

• ExtendedGCD[m,n] : the gcd and the coefficients in gcd = sm+ tn

• PowerMod[a, b,m] : ab mod m

To obtain a copy of Mathematica, go to

http://www.calvin.edu/it/core/desktop_services/personal_purchase.html#math

and click on Mathematica or simply search for Mathematica on the Calvin
College website.

http://www.calvin.edu/it/core/desktop_services/personal_purchase.html#math




Chapter 4

Induction and
Recursion

4.1. Mathematical induction

Mathematical induction is a form of proof that is used to prove proposi-
tions about the positive integers. Specifically, it can be employed to prove
statements of the form ∀n P (n), where P (n) is some propositional function
whose domain is the set of positive integers N.

A proof by mathematical induction has two parts.

Part 1: Base Case. Prove P (1).

Part 2: Inductive Step. Prove that P (k)→ P (k + 1) for every k ∈ N.

In the inductive step, P (k) is assumed as a hypothesis. This assumption
is called the inductive hypothesis. Here is an example of how a proof by
induction is written.

Example. The sum of the first n odd positive integers is n2.

Observe that the first odd positive integer is 1 = 2 · 1 − 1, the second is
3 = 2 · 2− 1, the third is 5 = 2 · 3− 1, . . . , and the nth odd positive integer
is 2n− 1.

Restatement. If n ∈ N, then 1 + 3 + · · ·+ (2n− 1) = n2.

Proof. This is a proof by mathematical induction.

Base Case. Let n = 1. There is only one term in the sum and the equation
reduces to 1 = 1 in this case.

47
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Inductive Step. Assume 1 + 3 + · · · + (2k − 1) = k2 for some k ∈ N (the
inductive hypothesis). We must show that

1 + 3 + · · ·+ (2(k + 1)− 1) = (k + 1)2.

But

1 + 3 + · · ·+ (2(k + 1)− 1) = 1 + 3 + · · ·+ (2k − 1) + (2k + 1)

= k2 + (2k + 1) (by the inductive hypothesis)

= (k + 1)2 (by algebra),

so the proof is complete. �

Example. If n ∈ N, then n3 − n is divisible by 3.

Proof. This is a proof by mathematical induction.

Base Case. Let n = 1. Then n3 − n = 0, which is divisible by 3. (It
might be reassuring to check another, less trivial, base case: If n = 2, then
n3 − n = 8− 2 = 6, which is divisible by 3.)

Inductive Step. Assume k3−k is divisible by 3 (the inductive hypothesis).
We must prove that (k + 1)3 − (k + 1) is divisible by 3.

Now (k + 1)3 − (k + 1) = k3 + 3k2 + 3k + 1− k − 1 = (k3 − k) + 3(k2 + k)
(algebra). By the inductive hypothesis, k3−k is divisible by 3 and 3(k2 +k)
is divisible by 3 by definition of divisible. Thus (k+ 1)3− (k+ 1) is divisible
by 3 by Theorem 3.1.1, Part (ii). �

Many of the theorems from number theory can be proved using mathemati-
cal induction. We now illustrate this by giving proofs of the uniqueness part
of the Fundamental Theorem of Arithmetic and Fermat’s Little Theorem;
later in the section we will use a modified version of mathematical induc-
tion, called strong induction, to prove the existence part of the Fundamental
Theorem of Arithmetic.

Lemma 4.1.1. If p is prime and p | a1a2 · · · an, where each ai is an integer,
then p | ai for some i.

Proof. This is a proof by mathematical induction.

Base Case. If n = 1, then the hypothesis is that p | a1, so we can conclude
p | a1.

Inductive Step. Assume that the following inductive hypothesis holds: If
p is prime and p | a1a2 · · · ak, where each ai is an integer, then p | ai for
some i. Now suppose p is prime and p | a1a2 · · · ak+1 = (a1a2 · · · ak)ak+1.
By Corollary 3.1.3, either p | a1a2 · · · ak or p | ak+1. In the first case, p | ai
for some i by the inductive hypothesis, and in the second case we also have
that p divides one of the ai (namely ak+1). �
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The existence part of the Fundamental Theorem of Arithmetic asserts that
every integer greater than 1 is either prime or can be written as a product
of prime factors. The uniqueness part asserts that this prime factorization
is unique, except for the order in which the factors are listed.

Proof of the Uniqueness of Prime Factorization.

Suppose a = p1p2 · · · pn and a = q1q2 · · · qm, where pi and qi are primes.
We will first prove that exactly the same factors occur in each factorization
and then we will prove that each factor has the same multiplicity in the two
factorizations.

Start with p1. Since p1 | a, we must have that p1 | q1q2 · · · qm. By
Lemma 4.1.1, this means that there is an i such that p1 | qi. But qi is prime,
so p1 = qi. In the same way we can prove that every one of the p’s is equal
to one of the q’s and that each of the q’s is equal to one of the p’s.

It remains to prove that each prime factor occurs with the same mul-
tiplicity in each factorization. We give a proof by contradiction. Suppose
there are more factors of p1 in p1p2 · · · pn than in q1q2 · · · qm. We can start
with the equation p1p2 · · · pn = q1q2 · · · qm and cancel as many factors of p1

from both sides as possible. Since there were more factors of p1 in the first
product than the second, this will result in an equation that has at least
one factor of p1 on the left and no factors of p1 on the right. But this is
impossible, because if p1 divides the left hand side it must also divide the
right hand side. �

Our proof of Fermat’s Little Theorem is based on the Binomial Theorem
from high school algebra.

Binomial Theorem (from high school algebra).

(a+ b)n = an +

(
n

1

)
an−1b+

(
n

2

)
an−2b2 + · · ·+ bn =

n∑
k=0

(
n

k

)
an−kbk,

where (
p

k

)
=

p!

k!(p− k)!
.

Remember that the binomial coefficients
(
p
k

)
in the theorem are the entries

in Pascal’s Triangle. One important observation about the numbers in the
triangle is that every entry in a prime numbered row is divisible by that
prime.

Lemma. If p is prime and 0 < t < p, then p divides

(
p

t

)
.
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Proof. Note that p divides p! =
(
p
t

)
t!(p− t)!. But p does not divide either

t! or (p− t)! because every prime factor of t! and (p− t)! is smaller than p.
Hence p divides

(
p
t

)
by Lemma 4.1.1. �

Fermat’s Little Theorem. If p is prime and a is a positive integer, then

ap ≡ a (mod p).

Proof. The proof is by induction on a.

Base case. If a = 1, then ap ≡ 1p ≡ 1 (mod p).

Inductive step. Assume kp ≡ k (mod p) (inductive hypothesis). The
Binomial Theorem allows us to express (k + 1)p as

(k + 1)p = kp +

(
p

1

)
kp−1 + · · ·+

(
p

p− 1

)
k + 1.

By the lemma above, p divides each of the terms in this sum except for
the first and the last. Thus (k + 1)p ≡ kp + 1 (mod p) and the inductive
hypothesis gives (k + 1)p ≡ k + 1 (mod p). �

Corollary 4.1.2. If p is prime and p does not divide a, then

ap−1 ≡ 1 (mod p).

Proof. By Theorem 3.2.3, a has an inverse modulo p. Multiplying both
sides of the congruence in Fermat’s Theorem by this inverse yields the new
congruence. �

Strong Induction. The term strong induction refers to a variation on
mathematical induction in which we assume a stronger inductive hypothesis.
Rather than showing P (k)→ P (k + 1) in the inductive step, we prove that

[P (1) ∧ P (2) ∧ · · · ∧ P (k)]→ P (k + 1).1

Like an ordinary proof by mathematical induction, a proof by strong induc-
tion has two parts.

Part 1: Base Case. Prove P (1).

1“Strong” induction is actually a weaker form of proof than ordinary induction in the sense
that the inductive step requires a stronger hypothesis in order to reach the same conclusion.
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Part 2: Inductive Step. Prove that [P (1)∧P (2)∧· · ·∧P (k)]→ P (k+1)
for every k ∈ N.

As an example we will prove the existence part of Fundamental Theorem of
Arithmetic.

Proof of the Existence of Prime Factorization. We must prove that
every integer greater than 1 is either prime or can be written as a product
of primes. This is a proof by strong induction.

Base Case. The smallest integer greater than 1 is 2, so that is our base
case. The number 2 is prime, so the conclusion holds in this case.

Inductive Step. Assume k is an integer greater than 1 and that every
integer in the range 2, . . . , k is either prime or can be written as a product
of primes. Consider k + 1. If k + 1 is a prime, then the conclusion holds. If
k + 1 is not prime, then it can be written as a product k + 1 = a · b, where
a > 1 and b > 1. Since a and b are both less than or equal to k, each of
them is either prime or a product of primes by the inductive hypothesis. It
follows that a · b is a product of primes. �

Other variations on induction are possible. See, for example, the proof of
Theorem 4.2.1 in the next section.

Exercises 4.1

1. Use mathematical induction to prove the following formulas are
true for each n ∈ N.

(a) 1 + 2 + · · ·+ n =
n(n+ 1)

2
.

(b) 12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

(c) 13 + 23 + · · ·+ n3 =

(
n(n+ 1)

2

)2

.

(d) 1 + a+ a2 + · · ·+ an =
an+1 − 1

a− 1
for any a with 0 < a < 1 or

a > 1. [This proves the formula used in Exercise 3.3.3(b).]

(e) 1 · 1! + 2 · 2! + 3 · 3! + · · ·+ n · n! = (n+ 1)! + 1.

2. Use mathematical induction to prove that if S is a finite set with
card(S) = n, then card(P(S)) = 2n.

3. Prove that 2n+ 1 < n2 for every n ≥ 3.

4. Prove that n2 < 2n for every n ≥ 5. [Hint: Use the result of the
previous exercise.]

5. Prove that 2n < n! for every n ≥ 4.
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6. Prove that n! < nn for every n ≥ 2.

7. Prove that n3 − n is divisible by 6 for every n ≥ 1.

8. Prove that xn − 1 is divisible by x− 1 for every n ≥ 1.

4.2. Recursion

A recursive definition of a function has a base case and a rule that determines
the value of the function at a nonnegative integer from its values at smaller
integers.

Example 1. Define a geometric sequence recursively by a0 = 3 and
an = 2an−1 for n ≥ 1. This recursive definition generates the sequence
3, 6, 12, 24, 48, . . . . It is quite easy to “solve” the recursion and get the ex-
plicit formula an = 3 · 2n. More generally, if {an} is a sequence satisfying
the initial condition a0 = a and the recursive first order linear equation
an = ran−1, then the solution is an = arn.

Example 2. The Fibonacci numbers are defined recursively by f0 = 0,
f1 = 1, and fn = fn−1 + fn−2 for n ≥ 2. In this case it is not so easy to
guess an explicit formula for fn. We will do that later in the semester, but
the methods involved will require the use of vectors and matrices. For now
it will be enough to find a lower bound for fn.

Definition. The golden ratio is the irrational number α = (1 +
√

5)/2. It is
the larger of the two roots of the quadratic equation x2 = x+ 1. The golden
ratio is irrational; a decimal approximation is

α ≈ 1.61803398874989484820458683436563811772030917980576286213545.

Theorem 4.2.1. If n ≥ 3, then fn > αn−2.

Proof. This is a proof by strong induction.

Base Case. Since the recursive formula has order 2, we must check two
base cases: n = 3 and n = 4. In case n = 3 we have fn = f3 = 2 and

αn−2 = α =
1 +
√

5

2
<

1 + 3

2
= 2

since
√

5 < 3. For n = 4 we have f + n = f4 = 3 and

αn−2 = α2 = α+ 1 =
1 +
√

5

2
+ 1 =

3 +
√

5

2
<

3 + 3

2
= 3.
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Inductive Step. Assume the inductive hypothesis fi > αi−2 for every
i ≤ k. We must show that fk+1 > α(k+1)−2 = αk−1.

fk+1 = fk + fk−1 (by the definition of Fibonnaci number)

> αk−2 + αk−3 (by the inductive hypothesis)

= αk−3(α+ 1) (by factoring)

= αk−3α2 (by the definition of α)

= αk−1. �

Example 3. The Euclidean Algorithm can be viewed as a recursive defi-
nition of the greatest common divisor function. Given a positive integer a
and a nonnegative integer b ≤ a, define

gcd(a, b) =

{
a if b = 0

gcd(b, a mod b) otherwise.

The Fibonacci numbers represent the worst case scenario for the Euclidean
Algorithm in the sense that if we attempt to use the Euclidean Algorithm
to calculate the greatest common divisor of two consecutive Fibonacci num-
bers, all the quotients are 1 so that remainders decrease at the slowest
possible rate. This observation, together with Theorem 4.2.1, was exploited
by Gabriel Lamé (1795–1870) to find a bound on the number of operations
required to find a greatest common divisor by means of the Euclidean Al-
gorithm.

Theorem 4.2.2 (Lamé). If a > b > 0, then the number of divisions required
to find gcd(a, b) using the Euclidean Algorithm is at most five times the
number of decimal digits in b.

Proof. Let us use n to denote the number of divisions required to find
gcd(a, b). We will show below that if we start by dividing by b and n divisions
are possible before we reach a zero remainder, then b must be at least as
large as the (n + 1)st Fibonacci number (i.e., b ≥ fn+1). Let us assume
that result for now and use it to complete the proof of Lamé’s Theorem.
Combining with Theorem 4.2.1 gives b ≥ fn+1 > αn−1. Take logarithms of
both sides of that inequality to obtain (n− 1) log10 α < log10 b, or

n <
1

log10 α
log10 b+ 1.

Now 1/ log10 α ≈ 4.78497, so we can conclude n < 5 log10 b+ 1.

Suppose b has k digits in its decimal expansion. Then b < 10k and therefore
log10 b < k. The inequality in the previous paragraph gives n < 5k+ 1. But
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both n and 5k are integers so we must have n ≤ 5k, which is the conclusion
of Lamé’s Theorem.

To complete the proof of the theorem, we must demonstrate that b ≥ fn+1.
Recall that n is the number of divisions required to find gcd(a, b). If we use
r0 to denote a and r1 to denote b, we can write the equations associated
with the divisions as

r0 = r1q1 + r2

r1 = r2q2 + r3

...

rn−2 = rn−1qn−1 + rn

rn−1 = rnqn + 0.

Since the remainders are getting smaller and rn is the last nonzero remain-
der, we have 0 < rn < rn−1 < · · · < r2 < r1 < r0. Each qi satisfies qi ≥ 1.

Claim. For each i ≥ 0, rn−i ≥ fi+2.

Once this claim is established we can take i = n − 1 and conclude that
b = r1 = rn−(n−1) ≥ f(n−1)+2 = fn+1, which is what we wish to prove.

The claim is proved by strong induction. Since 0 < rn < rn−1, we have
rn ≥ 1 and rn−1 ≥ 2. Thus rn ≥ f2 = 1 and rn−1 ≥ f3 = 2. This proves the
two base cases, i = 0 and i = 1, of the claim.

Now assume as an inductive hypothesis that the claim is correct for i = j−2
and i = j − 1. The equation that rn−j satisfies is

rn−j = rn−(j−1)qn−(j−1) + rn−(j−2).

Since qn−(j−1) ≥ 1, we have rn−j ≥ rn−(j−1) + rn−(j−2). The inductive
hypothesis gives rn−j ≥ fj+1 + fj = fj+2. This completes the inductive
proof of the claim and thus completes the proof of the Theorem. �

Exercises 4.2

1. Find a1, a2, a3, a4, and a5 for each of the following recursively de-
fined sequences.
(a) a1 = 2 and an+1 = an + 3 for n ≥ 1.
(b) a1 = 2 and an+1 = 3an for n ≥ 1.
(c) a1 = 1 and an+1 = 2an .

2. Give a recursive definition of the sequence {an}
(a) whose first few terms are 3, 7, 11, 15, 19, . . . .
(b) defined by the explicit formula an = 3n− 2.

3. Let f1, f2, f3, . . . be the sequence of Fibonacci numbers.
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(a) Prove f2
1 + f2

2 + · · ·+ f2
n = fnfn+1.

(b) Prove f1 + f3 + · · ·+ f2n−1 = f2n.
(c) Prove f2 + f4 + · · ·+ f2n = f2n+1 − 1.
(d) Determine the number of divisions required to find gcd(fn, fn+1).

4. Let {an} be the sequence that is defined recursively by a0 = 1/2
and an+1 = 2an − a2

n. Verify that

an = 1−
(

1

2

)2n

gives an explicit formula for an.
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