Math 333 Homework Problems #5

APPLIED PARTIAL DIFFERENTIAL EQUATIONS ... (4TH EDITION), by R. Haberman

3. Fourier series

3.2. Statement of convergence theorem

For the following problems, change "sketch the Fourier series" to "determine the Fourier series".

• 3.2.1bdg, 3.2.1g, 3.2.2bdf, 3.2.2e

3.3. Fourier cosine and sine series

For the following problems, change "sketch the Fourier" to "determine the Fourier".

- 3.3.1e,3.3.10
- 3.3.19 Consider

$$f(x) = \begin{cases} 0, & 0 \le x \le L/2\\ 1, & L/2 < x \le L. \end{cases}$$

Let $f_{e}(x)$ denote the even extension of f(x) to the interval [-L, L], and let $f_{o}(x)$ denote the odd extension of f(x) to the interval [-L, L]. Determine the Fourier series for $f_{e}(x)$, say $F_{e}(x)$, and the Fourier series for $f_{o}(x)$, say $F_{o}(x)$. Does $F_{e}(\pm L) = f_{e}(\pm L)$? Does $F_{o}(\pm L) = f_{o}(\pm L)$? Does $F_{o}(0) = f_{o}(0)$?