Math 333 Homework Problems \#1

Applied Partial Differential Equations (2nd Edition), by J.D. Logan

Those problems marked in red are to be turned in to be graded.

1. THE PHYSICAL ORIGINS OF PARTIAL DIFFERENTIAL EQUATIONS

- $1.3 .5, \longdiv { 1 . 3 . 6 }$
- 1.5.1,1.5.2, 1.5.3, 1.5.4
- 1.5 .9 This is an expanded version of $\mathbf{1 . 5 . 5}$. Consider the wave equation

$$
u_{t t}=c^{2} u_{x x}, \quad 0 \leq x \leq L
$$

Define the total energy by

$$
E(t)=\frac{1}{2} \int_{0}^{L}\left(u_{t}^{2}+c^{2} u_{x}^{2}\right) \mathrm{d} x
$$

(a) Show that

$$
E^{\prime}(t)=\left.c^{2} u_{x} u_{t}\right|_{x=0} ^{x=L}
$$

(b) If $u(0, t)=u(L, t)=0$, show that $E^{\prime}(t) \equiv 0$.
(c) If $u_{x}(0, t)=u(L, t)=0$, show that $E^{\prime}(t) \equiv 0$.

