Math 333 Homework Problems \#4

Applied Partial Differential Equations (2nd Edition), by J.D. Logan

4.1. Separation of variables

- 4.1.4

4.2. Flux and radiation conditions

- 4.2.1, 4.2.4
- 4.2.5 Consider the heat equation

$$
\begin{aligned}
u_{t} & =u_{x x}+\cos (\pi t) \sin (3 x), \quad 0<x<\pi / 2 \\
u(0, t) & =u_{x}(\pi / 2, t)=0 \\
u(x, 0) & =\frac{x(\pi-x)}{(\pi / 2)^{2}}
\end{aligned}
$$

Find the solution $u(x, t)$, and determine $\lim _{t \rightarrow+\infty} u(x, t)$. Plot the solution for $0 \leq t \leq 15$.

- 4.2.6 Consider the wave equation

$$
\begin{aligned}
u_{t t} & =u_{x x}+\sin (\omega t) \cos (2 x), \quad 0<x<\pi \\
u_{x}(0, t) & =u_{x}(\pi, t)=0 \\
u(x, 0) & =\frac{x^{4}(\pi-x)^{4}}{(\pi / 2)^{8}}, \quad u_{t}(x, 0)=0 .
\end{aligned}
$$

(a) Suppose that $\omega=1$. Find the solution $u(x, t)$, and determine the dominant behavior (if any) for $\lim _{t \rightarrow+\infty} u(x, t)$. Plot the solution for $0 \leq t \leq 30$.
(b) Suppose that $\omega=1.9$. Find the solution $u(x, t)$, and determine the dominant behavior (if any) for $\lim _{t \rightarrow+\infty} u(x, t)$. Plot the solution for $0 \leq t \leq 30$.
(c) Suppose that $\omega=2$. Find the solution $u(x, t)$, and determine the dominant behavior (if any) for $\lim _{t \rightarrow+\infty} u(x, t)$. Plot the solution for $0 \leq t \leq 30$.

