Math 333 Homework Problems \#8

Applied Partial Differential Equations (2nd Edition), by J.D. Logan

4.5. Diffusion in a disk

- 4.5.6 Consider the heat equation on the quarter-circle of radius R :

$$
\begin{aligned}
u_{t} & =k \Delta u \\
u_{\theta}(r, 0, t) & =u_{\theta}(r, \pi / 2, t)=u(R, \theta, t)=0 \\
u(r, \theta, 0) & =f(r, \theta) .
\end{aligned}
$$

Find the solution, and analyze the temperature as $t \rightarrow \infty$.

- 4.5.7 Consider the wave equation on the half-circle of radius R :

$$
\begin{aligned}
u_{t t} & =c^{2} \Delta u \\
u(r, 0, t) & =u_{\theta}(r, \pi, t)=u(R, \theta, t)=0 \\
u(r, \theta, 0) & =f(r, \theta), u_{t}(r, \theta, 0)=0 .
\end{aligned}
$$

Solve the initial value problem.

- 4.5.8 Consider the forced heat equation on the wedge of radius R :

$$
\begin{aligned}
u_{t} & =k \Delta u \\
u_{\theta}(r, 0, t) & =u(r, \pi / 3, t)=0, u(R, \theta, t)=h(\theta) \\
u(r, \theta, 0) & =f(r, \theta) .
\end{aligned}
$$

Find the solution, and analyze the temperature as $t \rightarrow \infty$.

