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There is a well-established instability index theory for linear and
quadratic matrix polynomials for which the coefficient matrices are
Hermitian and skew-Hermitian. This theory relates the number of
negative directions for the matrix coefficients which are Hermitian
to the total number of unstable eigenvalues for the polynomial.
Herein we extend the theory to �-even matrix polynomials of
any finite degree. In particular, unlike previously known cases
we show that the instability index depends upon the size of the
matrices when the degree of the polynomial is greater than two.
We also consider Hermitian matrix polynomials, and derive an
index which counts the number of eigenvalues with nonpositive
imaginary part. The results are refined if we consider the Hermitian
matrix polynomial to be a perturbation of a �-even polynomials;
however, this refinement requires additional assumptions on the
matrix coefficients.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

We are interested in studying the structure of the spectrum for matrix polynomials of the form

P d(λ) :=
d∑

j=0

λ j M j, (1.1)

where the matrices M j ∈ Cn×n are:
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(a) alternating, i.e., M2i is Hermitian and M2i+1 is skew-Hermitian;
(b) all Hermitian.

In the literature a matrix polynomial satisfying (a) is often referred to as a �-even matrix polynomial
[28,27], and we will adopt this nomenclature in this paper. We will call a polynomial satisfying case
(b) a Hermitian matrix polynomial. Values of λ for which P d(λ) is singular will be denoted here as
polynomial eigenvalues. It will be assumed throughout that the matrices M0 and Md are nonsingular.
The case that M0 is singular was discussed in Bronski et al. [5] for �-even quadratic polynomials,
and the technique used in that paper to deal with the singularity can easily be applied to �-even
polynomials of higher degree. For both problems we are interested in determining the exact number
of unstable polynomial eigenvalues, i.e., those values of λ with Reλ > 0. In order to achieve an exact
result, we will have to expand our notion of unstable polynomial eigenvalues to include those purely
imaginary eigenvalues which have negative Krein index (signature).

The study of the index problem for linear pencils goes back (at least) to the work of Pontrya-
gin [33]. He introduced the idea of studying the problem via a study of Hermitian matrices acting
on Hilbert spaces with an indefinite inner product (Pontryagin spaces). Other referential works which
study spectral problems with this perspective include Azizov and Iokhvidov [4], Gohberg et al. [9],
and Shkalikov [34,35]. A different approach to studying the problem, based upon the techniques of
spectral decomposition and simultaneous diagonalization of quadratic forms, is found in Chugunova
and Pelinovsky [7], Hǎrǎguş and Kapitula [14], and Pelinovsky [32].

A general study of matrix and operator polynomials is given in, e.g., Gohberg et al. [10],
Markus [30]. A review of the current understanding regarding the number for unstable polynomial
eigenvalues of linear �-even polynomials is given in Section 2. Additional results include the follow-
ing. Let x · y represent the standard inner product on Cn . When the matrices are all Hermitian, it is
known that if P d(μ) is definite for some μ ∈ R (e.g., Md or M0 is definite), and if the dth-order poly-
nomial px(λ) = x · P d(λ)x has d distinct real zeros for each nonzero x ∈ Cn , then all of the polynomial
eigenvalues are real-valued and algebraically simple [2, Theorem 3.8] (also see [1]). The definiteness
condition on the coefficients can be relaxed to simply assuming that the roots of px(λ) are distinct
and real-valued for any x [2, Theorem 4.7]. In both cases, it is not clear what is the number of unsta-
ble polynomial eigenvalues. If the polynomial is �-even, then the observation that iM2i+1 is Hermitian
for each i yields that if px(iλ) has d distinct real zeros for all x ∈ Cn , then all of the spectrum will be
purely imaginary and algebraically simple. Unfortunately, this stability criteria is not easily verified.
Henrion et al. [12] considered the more general problem of formulating conditions which ensured
that the polynomial eigenvalues belonged to a given region of the complex plane. For a given region
D ⊂ C it was shown in [12, Section 4] that if the optimal value μ of the optimization problem

μ = min
λ∈Dc

P d(λ)x · P d(λ)x

is positive for any nonzero x ∈ Cn , then all of the polynomial eigenvalues belong to D . Furthermore,
the optimization problem was shown to be solvable via efficient interior point methods by recasting
the problem as a Linear Matrix Inequality. Upper and lower bounds for the absolute values of the
polynomial eigenvalues are derived by Higham and Tisseur [13]. In particular, after setting

r := min
{‖M j‖−1/ j: j = 1, . . . ,d

}
, R := max

{‖M j‖1/(d− j): j = 0, . . . ,d − 1
}
,

the polynomial eigenvalues satisfy the bounds

r

1 + ‖M−1
0 ‖ � |λ| � R

(
1 + ∥∥M−1

d

∥∥)
.

Note that M0, Md being nonsingular guarantees that all of the polynomial eigenvalues are contained
within some finite annulus in the complex plane.

If we assume that each M j := m j ∈ R1×1, i.e., the polynomial is actually a dth-order polynomial
with real-valued coefficients, then the Routh–Hurwitz stability criterion can be used to determine the
exact number of zeros with positive real part. The extension to matrix-valued polynomials was re-
ported in [23]. If in the scalar case all of the coefficients are (without loss of generality) positive, then



Author's personal copy

3414 T. Kapitula et al. / Linear Algebra and its Applications 439 (2013) 3412–3434

it will be the case that there are no real-valued and positive zeros. This result holds for Hermitian
polynomials if all of the matrix coefficients are positive definite. In addition, if for the scalar problem
all of the coefficients in the first column of the Routh array are also positive, then all of the zeros
must satisfy Reλ < 0. If either of these conditions are violated, there will necessarily be some num-
ber of zeros with nonnegative real part. For example, if we assume that the polynomial is monic, i.e.,
md = 1, then the condition for all eigenvalues to have negative real part becomes:

d = 2: m1,m0 > 0,

d = 3: m2,m0 > 0, m1 > m0/m2,

d = 4: m3,m1,m0 > 0, m2 >
(
m2

1 + m0m2
3

)
/(m1m3).

The extension of these results to polynomials with complex-valued coefficients was reported in [8].
Unfortunately, it does not appear to be the case that such precise stability criterion results are avail-
able for Hermitian polynomials. However, it is shown in Section 4.4 that for a singularly perturbed
cubic Hermitian polynomial,

P ε
3(λ) = M0 + λM1 + λ2 M2 + ελ3 M3, 0 < ε � 1,

if M1, M2 > 0 (i.e., are positive definite), then there are precisely n(M0) + n(M3) unstable and real-
valued polynomial eigenvalues. Here n(S) denotes the number of negative eigenvalues (counting
multiplicity) for the Hermitian matrix S . In particular, for the singularly perturbed cubic Hermitian
polynomial the coefficients all being positive definite implies that there are no unstable polynomial
eigenvalues. As we will see via numerical simulation, this result crucially depends upon the singular
nature of the problem.

The paper is organized as follows. In Section 2 we review the Hamiltonian–Krein (instability) index
theory for linear �-even polynomials. In Section 3 we extend the theory to higher-order �-even poly-
nomials. Finally, in Section 4 we derive an index theory for Hermitian polynomials. We first count the
number of eigenvalues with nonpositive imaginary part. Afterwards, we take a perturbative approach
to consider the unstable polynomial eigenvalue problem. Additional assumptions are needed on the
matrix coefficients, so the results for this problem are not as general as those given in Section 3.

2. Hamiltonian–Krein index theory for �-even linear polynomials: A review

Here we will consider �-even linear polynomials of the form

P 1(λ) = S + λ J , (2.1)

where S ∈ Cn×n is Hermitian and J ∈ Cn×n is skew-Hermitian. Both matrices are assumed to be
invertible. A longer discussion on this material can be found in, e.g., [18, Chapter 7.1], for the case
that both matrices have real-valued entries. The infinite-dimensional version of the case discussed
herein can be found in Hǎrǎguş and Kapitula [14]. The interested reader may also wish to consult
Chugunova and Pelinovsky [7], Pelinovsky [32] for a different approach to the problem.

The polynomial eigenvalues for (2.1) are symmetric with respect to the imaginary axis, i.e., they
come in the pairs {λ,−λ}. If the matrices S , J have real-valued entries only, or if n = 2� is even and
the matrices have the (canonical) form

J =
(

0� −I�

I� 0�

)
, S =

(
S+ 0�

0� S−

)
,

where each S± ∈ C�×� is Hermitian, then the polynomial eigenvalues have the quartet symmetry
{±λ,±λ}. Here I� ∈ R�×� is the identity matrix, and 0� ∈ R�×� is the zero matrix. Let kr denote
the number of positive real-valued polynomial eigenvalues (counting multiplicity), and kc the num-
ber of complex-valued polynomial eigenvalues with positive real part (counting multiplicity). If the
polynomial eigenvalues satisfy the quartet symmetry, kc will be an even integer. If λ = iλ0 ∈ iR is



Author's personal copy

T. Kapitula et al. / Linear Algebra and its Applications 439 (2013) 3412–3434 3415

a polynomial eigenvalue with associated generalized eigenspace Eiλ0 , i.e., J −1 S : Eiλ0 �→ Eiλ0 with
σ( J −1 S |Eiλ0

) = {iλ0}, denote the negative Krein index of that polynomial eigenvalue by

k−
i (iλ0) = n(S |Eiλ0

). (2.2)

The positive Krein index is given by

k+
i (iλ0) = p(S |Eiλ0

) = dim[Eiλ0 ] − k−
i (iλ0).

The total negative (positive) Krein index is the sums of all the individual indices,

k±
i =

∑
k±

i (iλ0).

If the polynomial eigenvalues satisfy the quartet symmetry it will be true that k±
i (−iλ0) = k±

i (iλ0);
hence, as is the case for kc it will be true that k±

i is an even integer. The negative (positive)
Hamiltonian–Krein index is the sum of these individual indices, i.e.,

K ±
Ham := kr + kc + k±

i . (2.3)

In addition to being a useful counter within the Hamiltonian–Krein index, the Krein index of a
polynomial eigenvalue has dynamical implications (e.g., see Krein [24,25], Krein and Kjubarskii [26],
or the discussion in [17, Chapter 7.1.2]). Suppose that λ1, λ2 ∈ iR are simple polynomial eigenvalues,
and further suppose that S = S(ε) is smooth for some parameter ε . As long as λ j = λ j(ε) are simple,
they will also be smooth in ε , and will remain purely imaginary. Now suppose for a critical value
of ε , say ε0, the two eigenvalues collide, so that λ1(ε0) is an eigenvalue with algebraic multiplicity
two. If for ε 	= ε0 the two eigenvalues have the same Krein index,1 then λ1(ε0) will be algebraically
simple. Furthermore, it will be the case that the polynomial eigenvalues will remain purely imaginary
for all ε in a neighborhood of ε0. On the other hand, suppose that the polynomial eigenvalues have
opposite Krein index for ε 	= ε0. It will then generically be the case that

(a) λ1(ε0) will be a polynomial eigenvalue with geometric multiplicity one and algebraic multiplicity
two;

(b) for either ε < ε0 or ε > ε0 the polynomial eigenvalues will be complex conjugates with nonzero
real part.

In other words, ε = ε0 is the Hamiltonian–Hopf bifurcation point. The situation is graphically depicted
in Fig. 1.

The major result is that the Hamiltonian–Krein indices for linear �-even polynomials are related
to the negative (positive) index of S . The focus of Section 3 is to extend this result to �-even matrix
polynomials of arbitrary finite degree.

Lemma 2.1. The Hamiltonian–Krein indices (2.3) for the linear �-even polynomial (2.1) satisfy

K −
Ham = n(S), K +

Ham = p(S).

Remark 2.2. In general, the result of Lemma 2.1 is stated only for the negative Hamiltonian–Krein in-
dex. The result for the positive index follows immediately from the fact that the eigenvalue symmetry
implies

K −
Ham + K +

Ham = n.

1 As long as the polynomial eigenvalue is simple, its Krein index as a function of ε will not change.
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Fig. 1. (Color online.) A cartoon showing the collision of simple polynomial eigenvalues on the imaginary axis. In the left panel
there are four pairs of simple purely imaginary polynomial eigenvalues: one pair has a negative Krein index of one ((red)
squares), and the other three pairs have a negative Krein index of zero ((blue) crosses). The dotted oval denotes the pairs of
polynomial eigenvalues which collide when ε = ε0. The collision of polynomial eigenvalues with opposite sign (generically)
leads to a quartet of polynomial eigenvalues with nonzero real and imaginary parts. If the polynomial eigenvalues have the
same Krein index, they will remain simple and stay on the imaginary axis.

Remark 2.3. The Hamiltonian–Krein index at one level has the following interpretation. The Hermitian
matrix S determines the total number of (potentially) unstable polynomial eigenvalues, while the
skew-Hermitian matrix J determines the location of these polynomial eigenvalues.

We can refine the result of Lemma 2.1 in the canonical case where

J =
(

0� −I�

I� 0�

)
, S =

(
S+ 0�

0� S−

)
.

Recall that now the polynomial eigenvalues satisfy the quartet symmetry, with kc and k±
i being even

integers. In this case finding the spectrum of the linear polynomial is equivalent to finding that for
the quadratic Hermitian polynomial

P 2(λ) = S+ + λ2 S−1− .

For this quadratic polynomial there is a lower bound on the number of positive real-valued polyno-
mial eigenvalues; namely, kr � |n(S+)− n(S−)| (see Grillakis [11], Jones [15], Jones and Moloney [16],
Kapitula and Promislow [17] and Lemma 4.1 for a generalization to Hermitian polynomials of arbitrary
finite degree). Under the additional assumption that all of the real-valued polynomial eigenvalues
are algebraically simple, we can precisely determine the number of (potentially) unstable polynomial
eigenvalues with nonzero imaginary part through the intersection of two negative cones. For a Her-
mitian matrix S , the negative cone is given by

C−(S) = {x: Sx · x < 0} ∪ {0},
and dim[C−(S)] is the dimension of a maximal subspace contained in C−(S). The maximal subspace
is not unique, but the dimension is unique, and is given by dim[C−(S)] = n(S). If all of the real
polynomial eigenvalues are algebraically simple, then it is the case that the polynomial eigenvalues
with nonzero imaginary part satisfy

kc + k−
i = 2 dim

[
C−(S+) ∩ C−(

S−1−
)]

,

so that

kr = ∣∣n(S+) − n(S−)
∣∣ + 2

(
min

{
n(S+),n(S−)

} − dim
[
C−(S+) ∩ C−(

S−1−
)])
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[14, Corollary 2.26]. If this simplicity assumption on the purely real polynomial eigenvalues is re-
moved, then

kc + k−
i � 2 dim

[
C−(S+) ∩ C−(

S−1−
)]

,

and there is the corresponding lower bound for kr,

kr �
∣∣n(S+) − n(S−)

∣∣ + 2
(
min

{
n(S+),n(S−)

} − dim
[
C−(S+) ∩ C−(

S−1−
)])

.

While we will not discuss it here, a lower bound on the total number of these polynomial eigenvalues
with nonzero imaginary part can also be derived [14, Remark 2.27].

Finally, under the assumption that the Hermitian matrices satisfy for all nonzero x the estimate

S+x · x � αS−x · x, α 	= 0,

then

kr =
{ |n(S+) − n(S−)|, α > 0,

n(S+) + n(S−), α < 0,

see Azizov and Chugunova [3]. Consequently, when α < 0 all of the unstable polynomial eigenvalues
must be real-valued, whereas if α > 0 there will be precisely 2 min{n(S+),n(S−)} (potentially) un-
stable polynomial eigenvalues with nonzero imaginary part. In other words, when α < 0 the negative
cones have a trivial intersection, whereas if α > 0 the dimension of the subspace contained in the
intersection of the respective negative cones is maximal.

3. Hamiltonian–Krein index for �-even polynomials

The key to determining the Hamiltonian–Krein index for �-even polynomials of arbitrary finite
degree lies in finding a linearization that respects the Hamiltonian structure of the polynomial eigen-
value problem. This was accomplished by Mehrmann and Watkins [31]. Therein they showed that the
dth-order polynomial eigenvalue problem (1.1) is equivalent to the linear problem (2.1) with

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M0 0n 0n 0n · · · 0n

0n M2 M3 M4 · · · Md
0n −M3 −M4 0n

0n M4 0n
...

...
...

0n ∓Md 0n 0n · · · 0n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M1 M2 M3 · · · Md−1 Md

−M2 −M3 −M4 · · · −Md 0n

M3 M4 0n 0n

−M4 0n 0n
...

...
...

±Md 0n 0n · · · 0n 0n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Here ±Md represents (−1)d−1 Md . As long as the matrices M0 and Md are nonsingular, so are
the block matrices J and S . It is also clear that S is Hermitian and J is skew-Hermitian. The
associated eigenvectors are related through P d(λ)x = 0 if and only if (S + λ J )v = 0 with v =
(x, λx, λ2x, . . . , λd−1x)T. Through this linearization we immediately see that the polynomial eigenval-
ues for the �-even polynomial of higher degree satisfies the spectral symmetry {λ,−λ} of the linear
problem (see Mackey et al. [29,27,28] for an alternate proof).
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3.1. General result

In order to apply the results of Section 2 to the linearized system, we must do two things:
(a) compute n(S), and (b) relate the negative Krein index for the linearization to that for the original
polynomial. In order to compute n(S), we find the following result to be most useful:

Lemma 3.1. Let S ∈ C2m×2m be Hermitian and have the block form

S =
(

S1 S2

SH
2 0m

)
,

where S1 ∈ Cm×m is Hermitian. Assuming that S2 is nonsingular,

n(S) = m.

Proof. The eigenvalues for S are found by solving

S1x + S2 y = μx, SH
2 x = μy,

which is equivalent to solving the quadratic Hermitian polynomial

P 2(μ)x = 0, P 2(μ) = μ2 Im − μS1 − S2 SH
2 .

We know that for fixed μ ∈ R the polynomial eigenvalues for P 2(μ) must be real-valued. Since the
polynomial itself is Hermitian for real-valued μ, there exist m real analytic eigenvalues r j(μ) and
associated real analytic eigenvectors z j(μ) which solve P 2(μ)z j(μ) = r j(μ)z j(μ). For large |μ| we
have

P 2(μ)

μ2
= Im +O(|μ|−1);

hence, for large |μ| each of these eigenvalues has the asymptotics

r j(μ) = μ2 +O(|μ|) > 0, |μ| 
 1.

Since P 2(0) = −S2 SH
2 , it must further be the case that r j(0) ∈ σ(−S2 SH

2 ) for each j. Since S2 is
nonsingular, S2 SH

2 is a positive-definite matrix. This implies that r j(0) < 0 for each j. By continuity
we then have that r j(μ) = 0 has at least one positive and at least one negative solution for each j.
Since det[P 2(μ)] = 0 if and only if r j(μ) = 0 for some j, and since det[P 2(μ)] is a polynomial in μ
of degree 2m, we conclude that det[P 2(μ)] has precisely m positive zeros and m negative zeros. In
conclusion, n(S) = m. �
Remark 3.2. A more general result concerning the number of negative directions for block matrices is
available via Kostenko [22, Lemma 1]. If S ∈ C2m×2m is Hermitian and has the block form

S =
(

S1 S2

SH
2 S3

)
,

where S1, S3 ∈ Cm×m are Hermitian, then assuming that S1 is nonsingular,

n(S) = n(S1) + n
(

S3 − SH
2 S−1

1 S2
)
.

Using Lemma 3.1, we have the following result concerning the Hermitian linearization matrix S :

Lemma 3.3. Suppose that M0 and Md are invertible. If d = 2� − 1 for � ∈ N, then

n(S) = n(M0) + (� − 1)n, p(S) = p(M0) + (� − 1)n,
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while if d = 2� for � ∈ N, then

n(S) = n(M0) + n
(
(−1)�−1 M2�

) + (� − 1)n,

p(S) = p(M0) + p
(
(−1)�−1 M2�

) + (� − 1)n.

Proof. First suppose that d = 2� − 1. It is clear that

n(S) = n(M0) + n(S red),

where S red ∈ C(2�−2)n×(2�−2)n is the lower right-hand block. Further examination of S red shows that
it is of the block form described in Lemma 3.1 with S3 = 0(�−1)n , and with the invertibility of the
matrix S2 being ensured by the invertibility of M2�−1. The result for the negative index now follows
from that lemma. The positive index follows immediately from the facts that p(S) = (2� − 1)n − n(S)

and p(M0) = n − n(M0).
Now suppose that d = 2�. Here we will embed S in a larger matrix, compute the negative index

for that larger matrix, and then relate that negative index to that for S . First add another (block) row
and column to S to obtain

Snew =
(

S 0
0 (−1)�M2�

)
,

and note that

n(S) = n(Snew) − n
(
(−1)�M2�

) = n(Snew) + n
(
(−1)�−1 M2�

) − n. (3.1)

A similar result holds for the positive index. Setting A to be the invertible block matrix

A =
⎛
⎝ In 0 0n

0 I (2�−1)n 0
0n 0n×(�−1)n − In 0n×(�−1)n −In

⎞
⎠,

we clearly have n(Snew) = n(A Snew AT). It can be checked that

A Snew AT =
⎛
⎜⎝

M0 0 0

0 S1 S2

0 SH
2 0�n

⎞
⎟⎠,

where

S1 =

⎛
⎜⎜⎜⎝

M2 M3 · · · M1+�

−M3 −M4 · · · −M2+�

...
...

...
...

±M1+� ±M2+� · · · ±M2�

⎞
⎟⎟⎟⎠ ,

and

S2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

M2+� M3+� · · · M2�−1 M2� −M1+�

−M3+� −M4+� · · · M2� 0n M2+�

...
...

...
...

...
...

∓M2� 0n · · · 0n 0n ±M2�−1

0n 0n · · · 0n 0n ∓M2�

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The plus/minus is shorthand for (−1)�−1.
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The matrix A Snew AT has precisely the same block structure as the previously considered odd case,
and the invertibility of S2 is guaranteed by the invertibility of M2� . We may then say that

n
(

A Snew AT) = n(Snew) = n(M0) + �n.

Combining this result with that of (3.1) yields the negative index for the original matrix S ,

n(S) = n(M0) + n
(
(−1)�−1 M2�

) + (� − 1)n.

Clearly, there is an analogous result for the positive index. �
The Hamiltonian–Krein index for the linearization is

K −
Ham = n(S), K +

Ham = p(S),

where n(S) and p(S) have been computed in Lemma 2.1. Before we can state the index theorem
for the original polynomial, we need to relate the negative Krein index for the linearization (recall
(2.2)) to that for the polynomial. Suppose that x0 is an eigenvector for the polynomial associated
with the purely imaginary polynomial eigenvalue iλ0. The associated eigenvector for the linearization
is v0 = (x0, iλ0x0, (iλ0)

2x0, . . . , (iλ0)
n−1x0)

T. It is not difficult to check that

S v0 =

⎛
⎜⎜⎜⎜⎜⎝

M0x0

+(iλ0 M2 + (iλ0)
2 M3 + · · · + (iλ0)

m−1 Md)x0

−(iλ0 M3 + (iλ0)
2 M4 + · · · + (iλ0)

m−2 Md)x0

...

∓iλ0 Mdx0

⎞
⎟⎟⎟⎟⎟⎠ ,

so that

S v0 · v0 = M0x0 · x0 − [
(iλ0)

2 M2 + (iλ0)
3 M3 + · · · + (iλ0)

d Md
]
x0 · x0

− [
(iλ0)

3 M3 + (iλ0)
4 M4 + · · · + (iλ0)

d Md
]
x0 · x0 − · · · − (iλ0)

d Mdx0 · x0

= [
M0 − (iλ0)

2 M2 − 2(iλ0)
3 M3 − · · · − (m − 1)(iλ0)

d Md
]
x0 · x0.

Upon using the fact that

P d(iλ0)x0 = 0 ⇒ Mx0 = −[
iλ0 M1 + (iλ0)

2 M2 + · · · + (iλ0)
d Md

]
x0,

and substituting the above expression for Mx0 into the expression for S v0 · v0, we see that

S v0 · v0 = −iλ0 P ′
d(iλ0)x0 · x0.

Thus, for a purely imaginary polynomial eigenvalue we will define the negative (positive) Krein index
by

k−
i (iλ0) = n

([−iλ0 P ′
d(iλ0)

]∣∣
Eiλ0

)
, k+

i (iλ0) = p
([−iλ0 P ′

d(iλ0)
]∣∣

Eiλ0

)
, (3.2)

where Eiλ0 is the generalized eigenspace associated with the polynomial eigenvalue iλ0. Using (3.2),
the total negative (positive) Krein index is given by

k±
i =

∑
k±

i (iλ0). (3.3)

Theorem 3.4. Consider the �-even polynomial (1.1), where M0, Md are nonsingular. The Hamiltonian–Krein
indices (2.3) for the polynomial satisfy

K −
Ham =

{
n(M0) + (� − 1)n, d = 2� − 1,

n(M0) + n((−1)�−1 M2�) + (� − 1)n, d = 2�,
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and

K +
Ham =

{
p(M0) + (� − 1)n, d = 2� − 1,

p(M0) + p((−1)�−1 M2�) + (� − 1)n, d = 2�.

Here the Krein index for a purely imaginary polynomial eigenvalue is defined in (3.2), and the total Krein index
is given in (3.3).

Remark 3.5. In applications it may be the case that the matrix M0 is singular. In this case, when
d = 2 it was shown in Bronski et al. [5] – which is (partially) concerned with the quadratic polynomial
eigenvalue problem in a more general setting – that the negative Hamiltonian–Krein index satisfies

K −
Ham = n(M0) + n(M2) − n

((
M2 − M1 M−1

0 M1
)∣∣

ker(M0)

)
.

The underlying assumptions leading to this result are that M1 : ker(M0) �→ ker(M0)
⊥ , and the matrix

(M2 − M1 M−1
0 M1)|ker(M0) is invertible. While we will not do so herein, it is not difficult to generalize

that result to the higher-order �-even polynomials considered in this paper.

Remark 3.6. Since

k−
i − k+

i = K −
Ham − K +

Ham,

we see from Theorem 3.4 that the purely imaginary polynomial eigenvalues satisfy

k−
i − k+

i =
{

n(M0) − p(M0), d = 2� − 1,

[n(M0) − p(M0)] + [n((−1)�−1 M2�) − p((−1)�−1 M2�)], d = 2�.

Remark 3.7. Chugunova and Pelinovsky [6] and Kollár [20] studied this polynomial eigenvalue problem
for the quadratic case d = 2 under the additional assumption that M2 > 0. From Theorem 3.4 and
Remark 3.6 we see

K −
Ham = n(M0), K +

Ham = p(M0) + n, k+
i = k−

i + n + [
p(M0) − n(M0)

]
.

The result for K ±
Ham is precisely that found in their works. However, their proofs are different than

that presented herein.

It is interesting to note that the Hamiltonian–Krein index depends only on the lowest order term
in the polynomial, the highest order term (if the degree of the polynomial is even), and the degree of
the polynomial and size of the matrices if the degree is three or higher. The matrices M1, . . . , Md−1
influence the total number of polynomial eigenvalues with positive real part only as a second order
effect.

Upon further reflection it is not surprising that the Hamiltonian–Krein indices should depend on n
for d � 3. Consider the following illustrative example. Consider a polynomial of the form M0 + λ2� In ,
and suppose that M0 is positive definite. When � = 1, all of the polynomial eigenvalues will be
purely imaginary, and K −

Ham = 0. If � = 2, then there will be precisely 2n polynomial eigenvalues
with positive real part, which is in accordance with the theoretical result of K −

Ham = 2n. This result is
clearly independent of the negative index of M0. Continuing in this fashion one more time, we see
that when � = 3 there again will be 2n polynomial eigenvalues with positive real part, and 2n purely
imaginary polynomial eigenvalues. From the theoretical result that K −

Ham = 2n, we know that all of
the purely imaginary polynomial eigenvalues have positive Krein index.

3.2. Case study: Singularly perturbed �-even polynomials

As a consequence of Lemma 2.1, for linear �-even polynomials the number of eigenvalues with
positive real part is bounded above by

kr + kc � min
{

n(M0),p(M0)
}
. (3.4)
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Furthermore, as a consequence of Theorem 3.4, for quadratic �-even polynomials the number of eigen-
values with positive real part is bounded above by

kr + kc � min
{

n(M0) + n(M2),p(M0) + p(M2)
}
. (3.5)

The result for the quadratic bound follows immediately from the equalities

kr + kc + k−
i = n(M0) + n(M2), kr + kc + k+

i = p(M0) + p(M2).

In particular, this upper bound is independent of the size of the matrices. This observation is the
crucial one in the extension of the theory presented in this paper to the case where the matrix co-
efficients are actually either compact operators or operators with compact resolvent (see [5]). On the
other hand, for higher-order polynomials the bound depends upon the size of the matrix coefficients.
In this subsection we will show that the bound can be made independent of the matrix size for
(some) singularly perturbed polynomials.

Let us consider a singulary perturbed cubic polynomial of the form

P ε
3(λ) = M0 + λM1 + λ2 M2 + ελ3 M3, 0 < ε � 1.

Assuming that M0 and M3 are nonsingular, we can invoke Theorem 3.4 to say that

K −
Ham = n(M0) + n, K +

Ham = p(M0) + n,

which yields the upper bound

kr + kc � min
{

n(M0),p(M0)
} + n.

We will proceed to refine this upper bound, and make it independent of the matrix size.
Using regular perturbation theory (see Kato [19]), there will be 2n polynomial eigenvalues which

are O(1), and the other n polynomial eigenvalues will be O(1/ε). The O(1) polynomial eigenvalues
are to leading order found as solutions to the quadratic polynomial

P 0
2(λ) = M0 + λM1 + λ2 M2,

and the other n polynomial eigenvalues are to leading order found by solving the linear polynomial

P 0
1(z) = M2 + zM3, λ = z/ε.

Under the additional assumption that M2 is nonsingular, we can use the results of (3.4) and (3.5) for
each of these sub-polynomials to say that

O(1): kr + kc � min
{

n(M0) + n(M2),p(M0) + p(M2)
}
,

O(1/ε): kr + kc � min
{

n(M2),p(M2)
}
.

Adding these two quantities together, and noting that the polynomial eigenvalues for P 0
2(λ) and P 0

1(z)
will not interact for ε > 0 sufficiently small, gives us our first refined result:

Lemma 3.8. Consider the singularly perturbed cubic polynomial P ε
3(λ) for 0 < ε � 1. Assume that the coef-

ficients M0 , M2 , M3 are nonsingular. An upper bound for the number of polynomial eigenvalues with positive
real part (independent of the matrix size) is given by

kr + kc � min
{

n(M0) + n(M2),p(M0) + p(M2)
}

︸ ︷︷ ︸
O(1)

+min
{

n(M2),p(M2)
}

︸ ︷︷ ︸
O(1/ε)

.
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Fig. 2. (Color online.) A numerical demonstration of Lemma 3.8 when n = 32, and n(M0) = n(M2) = 1. The prediction is that
for 0 < ε � 1 there will be at most three polynomial eigenvalues with positive real part. In the left panel, where ε = 0.01, this
upper bound is achieved with kr = 3 (the third positive polynomial eigenvalue is of O(10−1), and cannot be seen with the
given axis scaling). In the right panel ε = 0.25, and it is clear that ε is too large for Lemma 3.8 to be valid. In this case one
must appeal to Theorem 3.4 to conclude that the upper bound is kr + kc � 33 (which is not achieved).

Remark 3.9. A further refinement is possible if it is assumed that M2 > 0, i.e., the quadratic poly-
nomial P 0

2(λ) is (essentially) monic. In this case the O(1) polynomial eigenvalues have the upper
bound

kr + kc � n(M0).

Regarding the polynomial eigenvalues for P 0
1(z), by Theorem 3.4 the Hamiltonian–Krein index satisfies

K −
Ham = 0, so that they will all be purely imaginary and have the same Krein index. As a consequence

of the spectral symmetry {λ,−λ} for the polynomial eigenvalues, and the fact that the Krein index
of a purely imaginary polynomial eigenvalue is an invariant under perturbation, for small ε > 0 they
will remain purely imaginary for the full polynomial P ε

3(λ). In conclusion, under the additional as-
sumption of M2 > 0 we know that for P ε

3(λ) the unstable polynomial eigenvalues have the upper
bound

kr + kc � n(M0),

are of O(1), and are realized as perturbations of the polynomial eigenvalues for the reduced polyno-
mial P 0

2(λ).

A numerical demonstration of the applicability of Lemma 3.8 is given in Fig. 2. For this figure the
polynomial eigenvalues when n = 32 and n(M0) = n(M2) = 1 are calculated using the MATLAB com-
mand “polyeig”. In the left panel ε = 0.01, and in the right panel ε = 0.25. The result of Lemma 3.8
predicts that for ε > 0 sufficiently small there will be at most two polynomial eigenvalues of O(1)

with positive real part, and at most one polynomial eigenvalue of O(1/ε) with positive real part. This
upper bound is achieved when ε = 0.01 (the other positive real polynomial eigenvalue is of O(10−1),
and cannot be seen with the given axis scaling). On the other hand, the result is clearly no longer
applicable in the right panel, and instead we must appeal directly to Theorem 3.4, which gives an
upper bound of 33 unstable polynomial eigenvalues (this upper bound is not achieved).

The additional unstable polynomial eigenvalues for larger ε arise from a series of Hamiltonian–
Hopf bifurcations, i.e., the collision of purely imaginary polynomial eigenvalues of opposite Krein
index. For 0 < ε � 1 the purely imaginary polynomial eigenvalues of O(1/ε) have negative index,
while those of O(1) have positive index. As ε increases these eigenvalues move towards each other,
and eventually collide, which causes the bifurcation.

In order to see the separation of the purely imaginary polynomial eigenvalues based upon their
Krein index, consider the following argument. The O(1) polynomial eigenvalues are to leading
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order realized as polynomial eigenvalues of the quadratic polynomial P 0
2(λ). By Theorem 3.4 the

Hamiltonian–Krein index for this polynomial is

kr + kc + k−
i = n(M0) + n(M2),

and by Remark 3.6 we have

k+
i = k−

i + [
p(M0) − n(M0)

] + [
p(M2) − n(M2)

]
.

For Fig. 2, where n(M0) = n(M2) = 1 with n = 32, these equalities become

kr + kc + k−
i = 2, k+

i = k−
i + 60.

Clearly, the vast majority of the purely imaginary polynomial eigenvalues have positive Krein index.
Since the index is an invariant under perturbation, the number k+

i can reduce if and only if an eigen-
value with positive index collides with an eigenvalue of negative index.

Now consider the O(1/ε) polynomial eigenvalues, which to leading order are realized as polyno-
mial eigenvalues of the linear polynomial P 0

1(z). By Theorem 3.4 the Hamiltonian–Krein index for this
polynomial is

kr + kc + k−
i = n(M2),

and by Remark 3.6 we have

k+
i = k−

i + [
p(M0) − n(M0)

]
.

For Fig. 2, where n(M0) = n(M2) = 1 with n = 32, these equalities become

kr + kc + k−
i = 1, k+

i = k−
i + 30.

Since kc, k±
i are even integers, we see for the numerical example that kr = 1 with k+

i = 30. Thus, it
now appears to be the case that all of the purely imaginary polynomial eigenvalues of O(1/ε) have
positive index. We now demonstrate that appearances are deceiving, and that instead they all have
negative index.

Going back to (3.2), the Krein index for a simple polynomial eigenvalue is given by

k−
i (iλ0) = n

(−iλ0 P ′
d(iλ0)x0 · x0

)
, k+

i (iλ0) = p
(−iλ0 P ′

d(iλ0)x0 · x0
)
,

where iλ0 is the polynomial eigenvalue with associated eigenvector x0. For the linear polynomial we
have

−iz0
(

P 0
1

)′
(iz0)x0 · x0 = −iz0 M3x0 · x0.

On the other hand, after using z = λ/ε to rewrite the cubic polynomial as

P ε
3(z) = ε2 M0 + εzM1 + z2 M2 + z3 M3,

we see

−iz0
(

P ε
3

)′
(iz0)x0 · x0 = −iz0

(
εM1 + 2iz0 M2 − 3z2

0 M3
)
x0 · x0 ∼ (iz0)z2

0 M3x0 · x0.

The last equality arises from the fact that M2x0 = −iz0 M3x0. Since z2
0 > 0 we can conclude that

sign
(−iz0

(
P ε

3

)′
(iz0)x0 · x0

) = − sign
(−iz0

(
P 0

1

)′
(iz0)x0 · x0

);
in other words, polynomial eigenvalues with positive Krein index for the reduced polynomial P 0

1(z)
correspond to polynomial eigenvalues with negative Krein index for the full polynomial P ε

3(z). Thus,
for the numerical example we have 30 purely imaginary eigenvalues of O(1/ε) with negative Krein
index.
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4. Indices for Hermitian polynomials

In this section we assume that all of the matrix coefficients are Hermitian. We wish to derive poly-
nomial eigenvalue indices for these polynomials. The nature of the index will depend on assumptions
associated with the inner coefficients M1, . . . , Md−1.

4.1. Positive real-valued polynomial eigenvalues

We begin by noting that in the proof of Lemma 3.1 we uncovered a general rule concerning the
number of positive real-valued polynomial eigenvalues for Hermitian polynomials.

Lemma 4.1. Consider the Hermitian polynomial

P d(λ) =
d∑

j=0

λ j M j,

where each M j ∈ Cn×n is Hermitian. Suppose that M0 and Md are nonsingular. Then

kr �
∣∣n(Md) − n(M0)

∣∣.
Proof. Consider P d(λ) for λ ∈ R. Since the polynomial is Hermitian, all of the eigenvalues for P d(λ),
denoted by r j(λ) for j = 1, . . . ,n, must be real-valued. Since the polynomial itself is Hermitian for
real-valued λ, each eigenvalue is real analytic. For large λ we have

P d(λ)

λd
= Md +O(

λ−1);
hence, for large positive λ, n(Md) of the eigenvalues are negative and p(Md) = n−n(Md) are positive.
Since P d(0) = M0, it must further be the case that r j(0) ∈ σ(M0) for each j. Thus, n(M0) of the
eigenvalues will be negative at λ = 0, and the other p(M0) will be positive. We now see by continuity
that there will be at least |n(Md)−n(M0)| solutions to the system of equations r j(λ) = 0, j = 1, . . . ,n,
for real λ > 0. Since r j(λ) = 0 if and only if det[P d(λ)] = 0, the result now follows. �

The same proof also allows us to restate the result as

kr �
∣∣p(Md) − p(M0)

∣∣.
Furthermore, another proof of Lemma 4.1 is available by considering the Hermitian linearization of
the polynomial given by Mehrmann and Watkins [31, p. 113], and then applying the results for linear
polynomials given by Grillakis [11].

4.2. General result

Ideally, in addition to the lower bound on the number of real-valued positive polynomial eigen-
values given in Lemma 4.1, we would like to determine the total number of polynomial eigenvalues
with positive real part. Our initial result will not allow us to provide that information; however, it will
allow us to say something about the distribution of the polynomial eigenvalues. We first set λ = iγ ,
so that the Hermitian polynomial becomes the �-even polynomial

P �
d(γ ) =

d∑
j=0

i jγ j M j = M0 + γ (iM1) − γ 2 M2 − γ 3(iM3) + γ 4 M4 + · · · .

For this �-even polynomial the polynomial eigenvalues satisfy the {γ ,−γ } symmetry, which for the
Hermitian polynomial yields the {λ,λ} symmetry. In general, polynomial eigenvalues in the closed
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right-half of the γ -plane for the �-even polynomial correspond to polynomial eigenvalues in the
closed lower-half of the λ-plane.

Regarding the Hamiltonian–Krein index for the �-even polynomial P ∗
d(γ ), we can invoke Theo-

rem 3.4 to explicitly say

K ±
Ham(γ ) = kr(γ ) + kc(γ ) + k±

i (γ ).

The count for the Hermitian polynomial then requires us to simply respect the spectral transforma-
tion. First,

κ−
i (λ) = kr(γ ),

where κ−
i (λ) refers to the number of purely imaginary polynomial eigenvalues for the Hermitian

polynomial in the lower-half plane. Regarding the complex-valued polynomial eigenvalues with pos-
itive real part for the �-even polynomial, they will become complex-valued polynomial eigenvalues
with negative imaginary part and nonzero real part. Unfortunately, with this argument we cannot
know how many of these polynomial eigenvalues will also have positive real part. In conclusion,

κ−
c (λ) = kc(γ ),

where κ−
c (λ) counts the number of polynomial eigenvalues for the Hermitian polynomial with

nonzero real part and negative imaginary part.
Finally, consider the fate of the purely imaginary polynomial eigenvalues for the �-even polyno-

mial. These will map to purely real polynomial eigenvalues for the Hermitian polynomial. Further-
more, since

−γ P �
d(γ ) = −λP d(λ), γ ∈ iR (λ ∈ R), (4.1)

for the Hermitian polynomial we now talk about the Krein index for purely real polynomial eigen-
values. Analogously to (3.2)–(3.3), we define the negative (positive) Krein index for a purely real
polynomial eigenvalue λ0 as

κ−
r (λ0) = n

([−λ0 P ′
d(λ0)

]∣∣
Eλ0

)
, κ+

r (λ0) = p
([−λ0 P ′

d(λ0)
]∣∣

Eλ0

)
, (4.2)

where Eλ0 is the generalized eigenspace associated with the polynomial eigenvalue λ0. The total
negative (positive) Krein index is

κ±
r =

∑
κ±

r (λ0). (4.3)

As a consequence of (4.1) we can now say

κ±
r (λ) = k±

i (γ ),

where here κ±
r (λ) is understood to be the total negative (positive) Krein index for the Hermitian

polynomial.
From the above discussion, and applying Theorem 3.4 upon noting that (i)2� = (−1)� implies

n
(
(−1)�−1(i)2�M2�

) = p(M2�), p
(
(−1)�−1(i)2�M2�

) = n(M2�),

we can now state our index theorem for the Hermitian polynomial:

Theorem 4.2. Consider the Hermitian polynomial of Lemma 4.1, where M0 , Md are nonsingular. The spectral
indices (2.3) for the polynomial satisfy

κ−
r + κ−

c + κ−
i =

{
n(M0) + (� − 1)n, d = 2� − 1,

n(M0) + p(M2�) + (� − 1)n, d = 2�,
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and

κ+
r + κ−

c + κ−
i =

{
p(M0) + (� − 1)n, d = 2� − 1,

p(M0) + n(M2�) + (� − 1)n, d = 2�.

Here κ−
c is the total number of complex-valued polynomial eigenvalues with negative imaginary part, κ−

i is
the total number of purely imaginary polynomial eigenvalues with negative imaginary part, and κ±

r are the
total number of real polynomial eigenvalues with positive (negative) Krein index (see (4.2) and (4.3)).

Remark 4.3. The analogue of Remark 3.6 is

κ−
r − κ+

r =
{

n(M0) − p(M0), d = 2� − 1,

2[n(M0) − n(M2�)], d = 2�.

The equality for d even follows from

[
n(M0) − p(M0)

] + [
p(M2�) − n(M2�)

] = 2
[
n(M0) − n(M2�)

]
.

Since the total number of real-valued polynomial eigenvalues is given by κr = κ−
r + κ+

r , we have

κr = 2κ+
r +

{
n(M0) − p(M0), d = 2� − 1,

2[n(M0) − n(M2�)], d = 2�.

In particular, Hermitian polynomials of even degree necessarily have an even number of real-valued
polynomial eigenvalues. This is a generalization of the well-known result that even-order polynomials
with real-valued coefficients have an even number of zeros (counting multiplicity).

Remark 4.4. Recently Kollár and Miller [21] considered the spectral problem for Hermitian polynomi-
als via a graphical approach. They showed that the Krein index of a purely real polynomial eigenvalue
can be determined by carefully studying the graphs of the eigenvalues r j(λ) given in the proof of
Lemma 4.1. Via this graphical approach they are also able to prove the instability result Lemma 4.1,
as well as analogues to Theorem 4.2 and Remark 4.3 when d = 2� − 1.

4.3. Case study: Hermitian polynomials as a perturbation of �-even polynomials

Unfortunately, Theorem 4.2 does not provide an instability result, in that it provides no information
as to how many polynomial eigenvalues have positive real part. We will now attack the problem from
a different perspective. The final results will not necessarily be as robust as that of Theorem 4.2,
in that we will impose constraints on the coefficients M1, . . . , Md−1. We will derive our results via
a perturbative approach; namely, we will consider the polynomial to be a perturbation of a �-even
matrix polynomial, and then derive conditions which ensure:

(a) there are no purely imaginary polynomial eigenvalues (i.e., κ−
i = 0 in Theorem 4.2);

(b) all of the purely imaginary polynomial eigenvalues with negative (positive) Krein index for the
unperturbed �-even problem move into the right-half of the complex plane upon applying the
perturbation.

In the case of a quadratic Hermitian polynomial, these conditions are ensured if the (damping) matrix
M1 is assumed to be definite, which is not an unusual assumption. We consider problems in Sec-
tion 4.4 for which these assumptions are dropped, but instead we make assumptions concerning the
relative size of the polynomial coefficients.

First assume that d = 2�. We begin by considering the polynomial as being embedded in the family
of Hermitian polynomials

P ε(λ) = P even(λ) + ε P odd(λ),
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where

P even(λ) =
�∑

j=0

λ2 j M2 j, P odd(λ) =
�−1∑
j=0

λ2 j+1 M2 j+1,

and ε � 0 is a parameter. Note that P 1(λ) = P 2�(λ). The idea of the proof is as follows. When ε = 0
the polynomial P 0(λ) is a �-even polynomial, and consequently we can precisely determine the num-
ber of polynomial eigenvalues with positive real part via the Hamiltonian–Krein index. If for ε > 0
the perturbation P odd(λ) ensures that (a) and (b) above hold, it will then be the case that the
Hamiltonian–Krein index is unchanged for all ε > 0. Moreover, when ε > 0 the Hamiltonian–Krein
index will count only those polynomial eigenvalues with positive real part.

We first consider (a). Suppose that iλ0 ∈ iR be a polynomial eigenvalue with associated eigenvec-
tor v0. We have

0 = P ε(iλ0)v0 · v0 =
�∑

j=0

(−1) jλ
2 j
0 M2 j v0 · v0 + iελ0

�−1∑
j=0

(−1) jλ
2 j
0 M2 j+1 v0 · v0.

Since all of the matrices are Hermitian, the first term in the sum is purely real, and the second term
is purely imaginary. Consequently, if we assume that for all μ ∈ R and v ∈ Cn ,

�−1∑
j=0

(−1) jμ2 j M2 j+1 v · v = P odd(iμ)

iμ
v · v 	= 0, (4.4)

then there can be no purely imaginary polynomial eigenvalues for any ε > 0. Note that (4.4) is en-
sured, e.g., if we assume that the matrices alternate in their definiteness (for example, M1 is positive
definite, M3 is negative definite, M5 is positive definite, etc.).

Now we consider point (b). Let iλ0 ∈ iR be an algebraically simple polynomial eigenvalue for the
polynomial when ε = 0, and let the associated eigenspace be denoted by Eiλ0 . The perturbed poly-
nomial eigenvalue is given by the expansion λ = iλ0 + ελ1 +O(ε2), and the perturbed eigenvector is
given by v = v0 + εv1 +O(ε2), where v0 ∈ Eiλ0 . Plugging this expansion into the polynomial yields
that at O(ε),

P even(iλ0)v1 = −λ1 P ′
even(iλ0)v0 − P odd(iλ0)v0.

Since P even(iλ0) is a Hermitian matrix, the standard Fredholm solvability condition yields

det
(
λ1

[−iλ0 P ′
even(iλ0)

]∣∣
Eiλ0

+ [−iλ0 P odd(iλ0)
]∣∣

Eiλ0

) = 0. (4.5)

Regarding the matrix −iλ0 P ′
even(iλ0)|Eiλ0

, this is what is used when computing the Krein indices of
iλ0 (see (3.2)),

k−
i (λ0) = n

(−iλ0 P ′
even(iλ0)

∣∣
Eiλ0

)
, k+

i (λ0) = p
(−iλ0 P ′

even(iλ0)
∣∣
Eiλ0

)
.

If we assume that the other matrix −iλ0 P odd(iλ0)|Eiλ0
is positive definite, then it will be the case

that k−
i (iλ0) of the solutions to (4.5) will be positive, and the others will be negative. On the other

hand, if the other matrix is negative definite, then k+
i (iλ0) of the solutions to (4.5) will be positive,

and the others will be negative. Since

−iλ0 P odd(iλ0) = λ2
0

�−1∑
j=0

(−1) jλ
2 j
0 M2 j+1,

the positive (negative) definiteness will be guaranteed if (−1) j M2 j+1 is positive (negative) definite
for j = 0, . . . , � − 1. Of course, this condition also ensures that (4.4) holds.
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Assuming definiteness, summing up over all purely imaginary polynomial eigenvalues reveals that
for small ε > 0 precisely k±

i of these polynomial eigenvalues will move into the right-half plane. Since
they cannot cross the imaginary axis for any ε > 0, they will remain in the right-half plane for all
ε > 0. Regarding those polynomial eigenvalues which are in the right-half plane when ε = 0, since
they cannot cross the imaginary axis they must remain in the right-half plane for all ε > 0. Finally, any
polynomial eigenvalues which originally have negative real part must continue to have this property
for all ε . In conclusion, there will be precisely K ±

Ham polynomial eigenvalues for the polynomial P ε(λ)

with positive real part for any ε > 0, which gives us the following result.

Lemma 4.5. Consider the Hermitian polynomial of Lemma 4.1 with d = 2�. Suppose that all of the purely
imaginary polynomial eigenvalues for the (�-even) polynomial P even(λ) are algebraically simple. If for all
μ ∈ R, −iμP odd(iμ) > 0, then the instability index for the Hermitian matrix polynomial is

kr + kc = n(M0) + n
(
(−1)�−1 M2�

) + (� − 1)n,

while if −iμP odd(iμ) < 0, the instability index is

kr + kc = p(M0) + p
(
(−1)�−1 M2�

) + (� − 1)n.

As a useful corollary for quadratic Hermitian polynomials, we have the following result which
combines the result of Lemma 4.1 with that of Lemma 4.5:

Corollary 4.6. Consider the quadratic Hermitian polynomial

P 2(λ) = M0 + λM1 + λ2 M2.

The total number of positive and real-valued positive polynomial eigenvalues has the lower bound

kr �
∣∣n(M2) − n(M0)

∣∣ (= ∣∣p(M2) − p(M0)
∣∣).

If M1 is definite, and if all of the purely imaginary polynomial eigenvalues of M0 + λ2 M2 are algebraically
simple, the total number of unstable eigenvalues satisfy the count

M1 > 0: kr + kc = n(M0) + n(M2); M1 < 0: kr + kc = p(M0) + p(M2).

In particular, if M2 has the same definiteness properties as M1 , then all of the polynomial eigenvalues are
real-valued and satisfy the index

M1, M2 > 0: kr = n(M0); M1, M2 < 0: kr = p(M0).

Now suppose that d = 2� + 1 is odd, and set

P even(λ) =
�∑

j=0

λ2 j M2 j, P odd(λ) =
�∑

j=0

λ2 j+1 M2 j+1.

Since all polynomial eigenvalues must be nonzero, we embed the original polynomial in the family of
rational polynomials,

Rε(λ) = P odd(λ)

λ
+ ε

P even(λ)

λ
.

It is clear that when ε = 1 the nonzero polynomial eigenvalues of R1(λ) coincide with those of the
original polynomial P 2�+1(λ). The polynomial P odd(λ)/λ is a polynomial of degree 2� with even
powers only, whereas the other part has a simple pole at λ = 0, and all of the powers are odd.

Since P odd(λ)/λ is of degree 2�, and since the origin is a pole, for small ε the perturbed polyno-
mial will only catch 2�n of the total (2�+1)n polynomial eigenvalues of the full polynomial: the other
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polynomial eigenvalues are of O(ε). Thus, we first describe the situation for the rational polynomial,
and then finish up by showing where the other n polynomial eigenvalues are located. First consider
the full perturbed polynomial,

P ε(λ) = P odd(λ) + ε P even(λ).

Following previous arguments it is the case that if P even(iμ) is definite for all μ ∈ R, then there will
be no purely imaginary polynomial eigenvalues for any ε > 0. Of course, this result also holds true
for the rational polynomial Rε(λ).

Now, it is clearly the case that Rε and P ε share the same spectrum for any nonzero polynomial
eigenvalues which are O(1); in particular, this holds when ε = 0. Since the setup is now essentially
the same as for the case of d even, we can just give the highlights which lead to the main result.
First, there will be no purely imaginary polynomial eigenvalues for ε > 0 if it is assumed that the
matrix P even(iμ) is definite for all μ ∈ R. The perturbation expansion similar to that which leads to
(4.5) yields instead

det
(
λ1

[−iλ0 P ′
odd(iλ0)

]∣∣
E iλ0

+ [−P even(iλ0)
]∣∣

E iλ0

) = 0.

The calculation follows from the fact that when λ = iλ0 is a polynomial eigenvalue with associated
eigenvector v0,[

d

dλ

(
P odd(λ)

λ

)∣∣∣∣
λ=iλ0

]
v0 =

[
P ′

odd(iλ0)

iλ0

]
v0.

If P even(iλ0) is negative definite for any λ0, then it will be the case that k−
i (iλ0) of the polynomial

eigenvalues originally at iλ0 move into the right-half plane upon perturbation, whereas if P even(iλ0)

is positive definite k+
i (iλ0) of the polynomial eigenvalues originally at iλ0 will move into the right-half

plane. From this point forward the argument is exactly the same, and we now know that for the 2�n
polynomial eigenvalues which are O(1) for small ε ,

P even(iμ) < 0 ⇒ kr + kc = n(M1) + n
(
(−1)�−1 M2�+1

) + (� − 1)n,

and

P even(iμ) > 0 ⇒ kr + kc = p(M1) + p
(
(−1)�−1 M2�+1

) + (� − 1)n.

Now let us consider the fate of the remaining n polynomial eigenvalues by considering the poly-
nomial P ε(λ). When ε = 0, λ = 0 is an algebraically simple polynomial eigenvalue of multiplicity n.
Consequently, for small ε the small polynomial eigenvalues have the expansion λ = ελ1 +O(ε2), and
the n associated eigenvectors have the expansion v j = e j +O(ε) for j = 1, . . . ,n, where e j is the jth
unit vector. The correction to the polynomial eigenvalue satisfies the characteristic equation

det(λ1 M1 + M0) = 0.

The condition that P even(iμ) be definite for all μ implies that M0 is definite. If M0 is negative
definite, then there will be p(M1) real positive zeros of the characteristic equation, and the other
zeros will be real and negative. If M0 is positive definite, then there will be n(M1) real positive zeros
of the characteristic equation, and again the other zeros will be real and negative. This relationship
of the polynomial eigenvalues with respect to the imaginary axis holds for all ε > 0. Since n(M1) +
p(M1) = n, we can now conclude the following regarding the polynomial eigenvalues for the full
polynomial.

Lemma 4.7. Consider the Hermitian polynomial of Lemma 4.1 with d = 2� + 1. Suppose that all of the purely
imaginary polynomial eigenvalues for the (�-even) polynomial P odd(λ)/λ are algebraically simple. If for all
μ ∈ R, P even(iμ) < 0, then the instability index for the Hermitian matrix polynomial is

kr + kc = n
(
(−1)�−1 M2�+1

) + �n,
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while if P even(iμ) > 0, the instability index is

kr + kc = p
(
(−1)�−1 M2�+1

) + �n.

Remark 4.8. If M0 is negative definite in Lemma 4.7, then from Lemma 4.1 the lower bound on the
number of positive real-valued polynomial eigenvalues is

kr � n − n(M2�+1) = p(M2�+1).

On the other hand, if M0 is positive definite, the lower bound becomes

kr � n(M2�+1).

Thus, in the cases that a definitive statement can be made regarding the number of polynomial eigen-
values with positive real part, the lower bound on the number of positive real-valued polynomial
eigenvalues only depends upon the definiteness of the matrix associated with the highest-degree
term.

4.4. Case study: Singulary perturbed Hermitian polynomials

The results of Lemma 4.5 and Lemma 4.7 are valid under the assumption that there are no purely
imaginary polynomial eigenvalues. We now show that this assumption can be relaxed if we instead
assume that some of the matrices are small in norm relative to the others. We do not do a compre-
hensive theory here; instead, we focus only on a representative example, and leave other cases to the
interested reader. The example will be composed of a perturbation of the well-understood quadratic
polynomial.

Consider a singulary perturbed cubic polynomial of the form

P ε
3(λ) = M0 + λM1 + λ2 M2 + ελ3 M3, 0 < ε � 1. (4.6)

There will be 2n polynomial eigenvalues which are O(1), and the other n polynomial eigenvalues will
be O(1/ε). The O(1) polynomial eigenvalues are to leading order found as polynomial eigenvalues to
the quadratic polynomial

P 0
2(λ) = M0 + λM1 + λ2 M2,

and the other n polynomial eigenvalues are found by locating the polynomial eigenvalues for the
linear polynomial

P 0
1(z) = M2 + zM3, z := λ/ε.

If we assume that M1 is definite, and if we also assume that the purely imaginary eigenvalues for
the �-even polynomial M0 + λ2 M2 are algebraically simple, then we can invoke Corollary 4.6 to say
that for the polynomial P 0

2(λ),

kr �
∣∣n(M2) − n(M0)

∣∣, kr + kc =
{

n(M0) + n(M2), M1 > 0,

p(M0) + p(M2), M1 < 0.

Now consider the linear polynomial P 0
1(z). Without any further assumptions we can invoke

Lemma 4.1 to say that

kr �
∣∣n(M3) − n(M2)

∣∣.
Thus, if ε > 0 is sufficiently small we have for the full polynomial the refined instability criterion

kr �
∣∣n(M3) − n(M2)

∣∣ + ∣∣n(M2) − n(M0)
∣∣ �

∣∣n(M3) − n(M0)
∣∣,
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where the latter inequality follows from the triangle inequality. Thus, when compared to Lemma 4.1
for the full polynomial we have a (potentially) larger lower bound on the total number of positive
real polynomial eigenvalues.

A more concrete result concerning the distribution of polynomial eigenvalues for P 0
1(z) cannot be

made without a definiteness assumption on one of the two coefficient matrices. If (at least) one of the
matrices is assumed to be definite, then all of the polynomial eigenvalues will be purely real (kc = 0).
If M3 is definite, then the result is

kr =
{

n(M2), M3 > 0,

p(M2), M3 < 0,

whereas if M2 is definite,

kr =
{

n(M3), M2 > 0,

p(M3), M2 < 0.

Combining all of these results gives the following result.

Lemma 4.9. Consider the singularly perturbed cubic polynomial P ε
3(λ) for 0 < ε � 1 sufficiently small. The

number of real positive polynomial eigenvalues has the lower bound

kr �
∣∣n(M3) − n(M2)

∣∣︸ ︷︷ ︸
O(1/ε)

+ ∣∣n(M2) − n(M0)
∣∣︸ ︷︷ ︸

O(1)

,

where the label under the brace refers to the size of these polynomial eigenvalues. Henceforth assume that M1
is definite. Start with the assumption that M1 > 0. If M2 is definite, then for the total number of unstable
polynomial eigenvalues we have

kr = n(M0) + n(M3), kc = 0; M2 > 0

kr + kc = n(M0) + p(M3) + n; M2 < 0,

while if M3 is definite we have

kr + kc =
{

n(M0) + 2n(M2); M3 > 0,

n(M0) + n; M3 < 0.

Now assume that M1 < 0. If M2 is definite, then for the total number of unstable polynomial eigenvalues we
have

kr + kc = p(M0) + n(M3) + n; M2 > 0,

kr = p(M0) + p(M3), kc = 0; M2 < 0,

while if M3 is definite we have

kr + kc =
{

p(M0) + n; M3 > 0,

p(M0) + 2p(M2); M3 < 0.

Proof. We only need to consider the two cases in which M2 has the same definiteness as M1, as
the other results follow from the discussion preceding the statement of the lemma. Suppose that
M1, M2 > 0. For the O(1) polynomial eigenvalues we have

kr � n(M0), kr + kc = n(M0) ⇒ kr = n(M0), kc = 0.

For the O(1/ε) polynomial eigenvalues we have kr = n(M3) with kc = 0. In conclusion, by summing
we get the desired result. If M1, M2 < 0, the same result follows upon substituting n(·) with p(·). �
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Fig. 3. (Color online.) A numerical demonstration of Lemma 4.9 when n = 32, n(M0) = n(M3) = 1, and M1, M2 > 0. The
prediction is that for 0 < ε � 1 there will be two real and positive polynomial eigenvalues, and all of the other polynomial
eigenvalues will have negative real part. This is precisely what is seen in the left panel, where ε = 0.01. In the right panel
ε = 0.25, and it is clear that ε is too large for Lemma 4.9 to be valid.

It is interesting to compare the perturbative result of Lemma 4.9 with the nonperturbative result
of Lemma 4.7. For example, suppose that M0 < 0 and M2 > 0, so that the instability index becomes

kr + kc = n(M3) + n.

This result is valid for all ε > 0. Furthermore, the lower bound on the number of real polynomial
eigenvalues guarantees that kc = 0 for small ε , so that in this case all of the unstable polynomial
eigenvalues are real-valued. As we saw in Remark 4.8, the lower bound becomes kr � p(M3) once ε
is sufficiently large. We see from Lemma 4.9 that if ε > 0 is now small, and if we relax the restriction
M0 < 0 and allow M0 to have some positive directions, then using n(M0) = n − p(M0) the result
becomes

kr + kc =
{

n(M3) + n + p(M0), M1 < 0,

n(M3) + n − p(M0), M1 > 0,
kr � n(M3) + n − p(M0).

This yields the upper bound kc � 2p(M0) for M1 < 0, with kc = 0 if M1 > 0. On the other hand, if
M0 > 0 and M2 < 0 the index valid for all ε > 0 becomes

kr + kc = p(M3) + n, kr � n(M3).

If ε > 0 is sufficiently small, then relaxing the condition that M0 be definite gives

kr + kc =
{

p(M3) + n − n(M0), M1 < 0,

p(M3) + n + n(M0), M1 > 0,
kr � p(M3) + n − n(M0).

If M1 < 0 all of the unstable polynomial eigenvalues are real-valued; otherwise, there is the upper
bound kc � 2n(M0).

For a numerical demonstration of Lemma 4.9, consider Fig. 3. For this figure the polynomial eigen-
values when n = 32, n(M0) = n(M3) = 1, and M1, M2 > 0 are calculated using the MATLAB command
“polyeig”. In the left panel ε = 0.01, and in the right panel ε = 0.25. The result of Lemma 4.9 predicts
that for ε > 0 sufficiently small there will be one real and positive polynomial eigenvalue of O(1),
and one real and positive polynomial eigenvalue of O(1/ε). Furthermore, there will be no other poly-
nomial eigenvalues with positive real part. This prediction is clearly validated. On the other hand, the
result is clearly no longer applicable in the right panel, where ε = 0.25.
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