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FIGURE 3.6. Regions of instability (Arnold tongues) for the linearized pendulum.

i i iodic function s — a(s) with period
se 3.26. Find an example of a perio : :
gl)zesrlfclh that 754(0,0) > 0. For this choice of the displacement, the inverted

pendulum is not stabilized for small 8 > 0.
Exercise 3.27. What can you say about stability of the inverted pendulum
using Lyapunov’s theorem (Theorem 2.68)7

Let us consider the stability of the noninv_erted pendul.urn: Notte) that the
linearization of the differential equation (3.75) at § = 0 is given by

w"” + (a — Ba{s))w =0,
and let ¥(t, , §) denote the principal fundamental matr'ix solution }(:f t:e
corresponding homogeneous linear system at ¢ = 0. In this case, we hav
tr (1, q,0) = 2cos o
Because the boundaries of the regions of instability are given by
ltr (1,0, 8) =2,

they intersect the c-axis ‘only if 1/a is an integer multiple of . In‘ view
of the fact that o = 1/9?, these observations suggest the zero sqlu‘mon is
unstable for small amplitude displacements whenever there is an integer n
such that the period of the displacement is
1/2 LA\1/2
(5" =50(5)")
Q\g 2 g
that is, the period of the displacement is a half—irgeiger r?:ﬁtiple ((l)lfl lil;ls
, In fact, the instability of the pen
natural frequency of the pendulum. » the . .
for a small amplitude periodic displacement with n = 1 is demonstrated in

ery playground by children pumping up §wings.. .
evT}}Ieppr};gof that the instability boundaries do indeed cross the a-axis

— . ined
at the “resonant” points (o, 8) = ((nm)2,0), for n=1,... ,00, is obtained
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from an analysis of the Taylor expansion of the function given by ¥(1, o, §)
at each resonant point (see Exercise 3.28). Typically, the instability regions
are as depicted in Figure 3.6. The instability region with n = 1 is “open”
at B = 0 (the tangents to the boundary curves have distinct slopes); the
remaining instability regions are “closed.” While it is an interesting math-
ematical problem to determine the general shape of the stability regions
([78], [115]), the model is, perhaps, not physically realistic for large 3.

Exercise 3.28. Suppose that a(s) = sin(2ms) and set
g(e, B) = tr¥(1, e, B) — 2.

Show that g.((nm)?,0) = 0 and 95((n7)?,0) = 0. Thus, the implicit function
theorem cannot be applied directly to obtain the boundaries of the regions of
instability, the boundary curves are singular at the points where they meet the
a-axis. By computing appropriate higher order derivatives and analyzing the
resulting Taylor expansion of 9, show that the regions near the a-axis are indeed
as depicted in Figure 3.6. Also, show that the regions become “thinner” as n
increases.

3.6  Origins of ODE: Partial Differential Equations

In this section there is an elementary discussion of three “big ideas”:

e Certain partial differential equations (PDE) can be viewed as ordi-
nary differential equations with an infinite dimensional phase space.

e Finite dimensional approximations of some PDE are systems of ordi-
nary differential equations.

e Traveling wave fronts in PDE can be described by ordinary differen-
tial equations. :

While these ideas are very important and therefore have been widely stud-
ied, only a few elementary illustrations will be given here. The objective
of this section is to introduce these ideas as examples of how ordinary
differential equations arise and to suggest some very important areas for
further study (see [27], [85], 84], [90], [135], [140], [162], [174], and [190]).
We will also discuss the solution of first order PDE as an application of the

_ techniques of ordinary differential equations.

Most of the PDE mentioned in this section can be considered as mod-

_els of “reaction-difusion” processes. To see how these models are derived,

imagine some substance distributed in a medium. The density of the sub-

_stance is represented by a function 1 : R” x R — R so that (z,t) — u(z,t)
_gives its density at the site with coordinate z at time £.
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If 2 is a region in space with boundary 8¢}, then the rate of change of the
amount of the substance in Q is given by the flux of the substance through
the boundary of  plus the amount of the substance generated in €; that

is,

4 udV = — X-ndS—i—/de
dt Jo a0 a

where X is the vector field representing the motion of the substance; dV
is the volume element; dS is the surface element; the vector field 7 is the
outer unit normal field on the boundary of Q; and f, a function of density,
position and time, represents the amount of the substance generated in Q.
The minus sign on the flux term is required because we are measuring the
rate of change of the amount of substance in Q. If, for example, the flow
is all out of £, then X -5 > 0 and the minus sign is required because the
rate of change of the amount of substance in Q2 must be negative.

If Stokes’ theorem is applied to rewrite the flux term and the time deriva-
tive is interchanged with the integral of the density, then

/utdv:—/dideV—i—/fdv.
Q Q Q

Moreover, by using the fact that the region () is arbitrary in the integral
identity, it is easy to prove the fundamental balance law

up = ~divX + f. (3.78)

To obtain a useful dynamical equation for u from equation (3.78), we

need a constitutive relation between the. density u of the substance and
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Also, if we assume that the diffusion coefficient K is equal to k? for some
constar.lt k, the function p is given by p(u,x,t) = yu where v is a constant
and V is an incompressible flow field (div V = 0); then we obtain the mosl;
often used reaction-diffusion-convection model equation

u +ygradu -V = k*Au+ f. (3.80)

II.1 this equation, the gradient term is called the convection term, the Lapla-~
cian term is called the diffusion term, and f is the source term.’Let; us also
nf)te that if the diffusion coefficient is zero, the convection coefficient IS
given by v = 1, the source function vanishes, and V is not necessarily in-
compressible, then equation (3.80) reduces to the law of conservation of
mass, also called the continuity equation, given by

ug + div(uV) = 0. (3.81)

Because equation (3.80) is derived from general physical principles, this
.PDE can be used to model many different phenomena. As a result ;;here
is a vast scientific literature devoted to its study. We will not be z;ble to
probe very deeply, but we will use equation (3.80) to illustrate a few aspects
of the analysis of these models where ordinary differential equations arise
naturally.

3.6.1 Infinite Dimensional ODE

ﬁl silmple sdpecial case of the reaction-diffusion-convection model (3.80) is

e linear diffusion equation (the heat equation) in one i imensi
spatial

e e ) patial dimension,

the flow field X. It is not at all clear how to derive this relationship from
the fundamental laws of physics. Thus, we have an excellent example of
an important problem where physical intuition must be used to propose a
constitutive law whose validity can only be tested by comparing the results
of experiments with the predictions of the corresponding model. Problems
of this type lie at the heart of applied mathematics and physics.

For equation (3.78), the classic constitutive relation—called Darcy’s,
Fick’s, or Fourier’s law depending on the physical context—is

U = K gy (3.82)

where k2 is the diffusivity constant. This differential equation can be used
» !:o m9del heat flow in an insulated bar. In fact, let us suppose that the bar is
idealized to be the interval [0,£] on the z-axis so that u(z, t) represents the
temperature of the bar at the point with coordinate z at time ¢. Moreover
because the bar has finite length, let us model the heat flow at the ends o%
X = ~Kgradu+ uV thebbar where we will consider just two possibilities: The bar is insulated
whore K 0 and  are functions of donsity sosition, and time; and at both ends such that we have the Neumann boundary conditions
denotes the fow field for the medium in which our substance is movin,
The minus sign on the gradient term represents the assumption that the
substance diffuses from higher to lower concentrations. ,
By inserting the relation (3.79) into the balance law (3.78), we obtain

the dynamical equation

up = div(K gradu) — div(uV) + f.

'U/;,;(O, t) = Oa u$(£7 t) = 0’

r; heat is a.l.lowed to flow through the ends of the bar, but the temperature
t ’the ends is held constant at zero (in some appropriate units) such that
¢ have the Dirichlet boundary conditions

u(0,¢) = 0, u(€,t) = 0.
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If one set of boundary conditions is imposed and an initial temperature
distribution, say = — uo(z), is given on the bar, then we would expect
that there is a unique scalar function (z,t) + u(z,t), defined on the set
[0,€] x [0,00) that satisfies the PDE, the initial condition u(z,0) = uo(%),
and the boundary conditions. Of course, if such a solution exists, then
for each t > 0, it predicts the corresponding temperature distribution
x + u(z,t) on the bar. In addition, if there is a solution of the bound-
ary value problem corresponding to each initial temperature distribution,
then we have a situation that is just like the phase flow of an ordinary dif-
ferential equation. Indeed, let us consider a linear space £ of temperature
distributions on the rod and let us suppose that if a function v : {0,(] = R
is in &, then there is a solution (z,t) — u(z,t) of the boundary value prob-
lem with v as the initial temperature distribution such that & — u(z,1) is
5 function in £ whenever t > 0. In particular, all the functions in £ must
satisfy the boundary conditions. If this is the case, then we have defined a
function (0, 00) x £ — £ given by (t,v) — @t (v) such that wo(v)(z) = v(z)
and (z,t) — pi(v)(z) is the solution of the boundary value problem with
initial temperature distribution v. In other words, we have defined a dy-
namical systermn with “fow” ; whose phase space is the function space
£ of possible temperature distributions on the bar. For example, for the
Dirichlet problem, we might take £ to be the subset of C*[0,] consisting
of those functions that vanish at the ends of the interval [0, £].

Taking our idea a step farther, let us define the linear transformation A

on & by
Au = K*ugs.
Then, the PDE (3.82) can be rewritten as )
= Au, (3.83)

an ordinary differential equation on the infinite dimensional space £. Also,
to remind ourselves of the boundary conditions, let us write A = Anx
if Neumann boundary conditions are imposed and A = Ap for Dirichlet
boundary conditions.

The linear homogeneous differential equation (3.83) is so simple that
its solutions can be given explicitly. However, we will see how the general
solution of the PDE can be found by treating it as an ordinary differential
equation.

Let us begin by determining the rest points of the system (3.83). In fact, a
rest point is a function v : [0,£) — R that satisfies the boundary conditions
and the second order ordinary differential equation vgz = 0. Clearly, the
only possible choices are affine functions of the form v = ¢z +d where ¢ and
d are real numbers. There are two cases: For Ay we must have c =0, but d
s a free variable. Thus, there is a line in the function space £ corresponding
to the constant functions in £ that consists entirely of rest points. For the
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Dirichlet case, both ¢ i i i
i c,)f ou ph::edsf,arét:St vanish and there is a unique rest point
.Havmg ff)und the rest points for the differential equation (3.83), let u
discuss their stability. By analogy with the finite dimensional éase’ let uS
recall th'fzt we have discussed two methods that can be used to det,e ine
the sta}nlity of rest points: linearization and Lyapunbv’s direct mel;rlrllllsie
In Partlcular, for the finite dimensional case, the method of linearizati '
Z?légeas lo:g as the .rest point is hyperbolic, and, in this case, the eigenv:lrllléz
of the ;}Ii ;r;ly;njtrlx for the linearized system at the rest point determine
Workmg formally, let us apply the method of linearization at the rest
pomt§ of the system (3.83). Since this differential equation is already line
we mlght.expect the stability of these rest points to be determin};d fr o
an analysis of the position in the complex plane of the eigenvalues of ‘E)Irln
system operator A. By definition, if A is an eigenvalue of the operator A :
or {4/\[, then there must be a nonzero function v on the interval {0, ¢] th?:
satisfies the boundary conditions and the ordinary differential equz;tion ’

vy, = Av.

If v is an eigenfunction with eigenvalue A, then we have that

) y)
2 _ 2
/0 k vmvdw—/o v dzx. (3.84)

Let us suppose that v is square integrable, that is,

Y
/ v dz < oo
0

and also smooth enough so that int i i
: 1 egration by parts is valid. Th -
tion (3.84) is equivalent to the equation o

Y '3 ) by £
_ _ 2 2
. /0 vy dT = =R v dz.

alhus, }if either Dirichlet or Neumann boundary conditions are imposed
; en the ’poundary term from the integration by parts vanishes, and there—,
ore the elgfanvalue A must be a nonpositive real number. ,

hFo? Ap,if A =0, Fhen there is no nonzero eigenfunction. If A < 0, then
the eigenvalue equation has the general solution ’

)

v(z) = ¢; cosazx + cesinax

. (\)1/2
:s;lhere.o'z = (=X\)/2/k and ¢, and c; are constants; and, in order to satisfy
e Dirichlet boundary conditions, we must have

< 1 0 C1 _ 0
cosal sinaf e/ \O
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for some nonzero vector of constants. In fact, the determinant of the matrix
must vanish, and we therefore have to impose the condition that ol is an

integer multiple of m; or equivalently,
nwk\2
()
£
with a corresponding eigenfunction given by

., nmw
T > sin—-%

1)
for each integer n =1,2,...,00. By a similar calculation for Ay, we have
that A = 0 is an eigenvalue with a corresponding eigenfunction v = 1, and

again the same real numbers
AN
r=-(F)

are eigenvalues, but this time with corresponding eigenfunctions

nmw
I — CO8 — .

£

The nature of the real parts of the eigenvalues computed in the last para-
graph and the principle of linearized stability suggest that the origin is an
asymptotically stable rest point for the Dirichlet problem. On the other
hand, the rest points of the Neumann problem seem to be of a different

type: each of these rest points would appear to have a one-dimensional
te ‘dimensional stable manifold. All of these

center manifold and an infini
statements are true. But to prove them, certain modifications of the corre-

sponding finite dimensional results are required. For example, the principle
of linearized stability is valid for rest points of infinite dimensional ODE
under the assumption that all points in the spectrum of the operator given
by the linearized vector field at the rest point (in our case the operator A)
have negative real parts that are bounded away from the imaginary axis
in the complex plane (see, for example, [162, p. 114]). More precisely, the
required hypothesis is that there is some number o > 0 such that the real
part of every point in the spectrum of the operator is less than —a.
Recall that a complex number A is in the spectrum of the linear operator
A if the operator A — Al does not have a bounded inverse. Of course, if
v # 0is an eigenfunction with eigenvalue A, then the operator A — Al is
not injective and indeed ) is in the spectrum. In a finite dimensional space,
if an operator is injective, then it is invertible. Hence, the only complex
numbers in the spectrum of a finite dimensional linear operator are eigen-
values. However, in an infinite dimensional space, there can be points in
the spectrum that are not eigenvalues (see [60]). For example, let us define
the space L2(0,£) to be all (real) functions v : [0,£] — R such that

/ " P2 da < 0 (3.85)
0
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where we consider two such functions v and w to be equal if

13
/0 (v(z) — w(z))?dz = 0,

and consider the o
perator B : L2 — [2 gi
and ‘ given by (Bf)(z) — i
perator has no eigenvalues, yet the entire interval [0 Z) ( ) i 2 (@), Thi
ot ,£] is in its spectrum.
The i
ke ;;;ii:tcéis ;41; an.d AN,. considered as operators defined in L2(0, ¢)
Howormn. 1o a (t:;);lsmlt entirely of eigenvalues (pure point spectrli;n),
g rove this claim we must first d i '
e eal with the fact th
dges nolt"s ;;:jen(t)t %eﬁn?d on a,%l of L2. After all, a square integrable ;’lﬁng;ese
o o ave }? ebdlffer?nt;able. Instead, we can view our operatorsl(zn
‘ e subset of L° consisting of i .
oo defi . : g of those functions th
de (;\;:ﬂivs;fgth contalr'xed in L2. Then, the claim about the sp:(t:t};:‘ff t;lVO
e > :np;cc)we(%l in twoL szteps. First, if a complex number ) is not a?l
X n for all w € there is some functi i
boundary conditions and the differential equatio?lcmon v that satisfes the

2
kvcz:z—)\’l)zw_

iﬁazt}(lzr jvt;\l}d)Z there is an operator B : L2 — L2 given by Bw = v such
i constru(:;}io_ 'uf).BThe fac? that B is bounded is proved from the
et Bl T _n o ; as an %ntegral operator. Also, it can be proved
et Wy —dv or all v in thfe domain of A (see Exercise 3.29)

cts and the theorem on linearized stability mentioned above.

g
it fOllOWS thal the origin 1S an asynlptotlcally Sta.ble rest pOlnt fOI the

Exercise 3.29. Sh,
.2Y. Show that the spect
Av =19 o . pectrum of the operator in L?(0 ;
eigenvaﬁezlgl either Dirichlet or Neumann boundary conditions cE)r; e) tglven by
- Prove the same result for the operator Av = qu,, + b site only of
- zx Ve

a, b, and c are real numbers. + cv where

In view of our results for finite dimensi i

if . . nsional linear systems
Siozzlhsgzs Z shr;eczr ev311.1t10n equation ¢ = Av, eveg in an’i:gszzegr;};?
oonal phase t};l)e P’])aiirjl ( gfs.;lw = Aw, then e**w is a solution. This is indeed
com e the oo of. ). Mor‘e(.)ver, for linear evolution equations, we
can use ¢ SOluﬁons o th§uperpos'1t10n .to deduce that every linear cor’nbi—
a1 O soluti  this type is again a solution. If we work formall

, proving convergence, and if we use the eigenvalues an}(’i’

eigenvectors computed above, th “ ;
problem is given by » then the *gencral solution” of the Dirichlet

<

U = ~(Bzky? . -nmw
(@) Ze 2 Vg, sin—z,
n=1 Z
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and the general solution of the Neumann problem is given by

i _(M&)ﬁt nmw
u(z,t) = Z e V"t ) by, cos —e—z
n=0
where a,, and b, are real numbers. o
If the initial condition u(z,0) = uo(z) is given,
Dirichlet problem we must have that

then, for instance, for the

= . nw
up(z) = }: an Sin —- 2.
n=1

In other words, the initial function ug must be rel?resented by a ]'?‘OHI"ICI'
sine series. What does this mean? The requirement is that the Fourier sine

series converges to ug in the space L2 endowed with its natural norm,

o] = (/: () dac)l/z.

is a Hilbert space; that is, with respect
[156]). The precise
series is that there

In fact, the inner product space ?
to this norm, every Cauchy sequence in L? converges ‘(see
requirement for up to be represented by a Four}er sine

are real numbers a, and corresponding L? partial sums

N N nwm

Qp SIL ——
Z e 0 -
n=1

such that
lim Jlup —unl|| =0.
N-—oo
If the initial function ug is continuous, then for our special cas? thﬂa cor-
responding solution obtained by Fourier series also converges pqmtw1se Fo
a O? function that satisfies the PDE in the classical sense. We will show in

5 moment that this solution is unique, and therefore the sp'ecial 'solutions
of the PDE obtained from the eigenvalues and corresponding eigenfunc-

tions do indeed form a fundamental set of solutions for our boundary value

problems.
There are several ways to prove

an alternative uniqueness proof is based on the maximum prl

Exercise 3.30). To show the uniqueness result, let us note that if two so-

lutions of either the Dirichlet or Neumann boundary value problem ‘satisf_y
fference u of these two solutions is

the same initial condition, then the di

that solutions of the diffusion equation

3 ”».
with a given initial condition are unique. We will use the “energy rr.16thod H
nciple (see
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a solution of the same boundary value problem but with initial value the
zero function. Using an integration by parts, we also have the equality

d I3 1 £ £ 2
-—/ —u2da::/ utudmzkz/ umuda:z—k2/ u? dz.
dt Jo 2 0 0 0

It follows that the function

€1
t»—»/ —u?(z,t) dz
0 2

is not increasing, and therefore it is bounded above by its value at ¢ = 0,
namely,

£l
/ —u%(z,0)dz = 0.
o 2 ‘
The conclusion is that u(z,t) = 0, as required.

Exercise 3.30. Prove the maximum principle: If u;(x, ) = k*uq{(x, t) is a C?
function on the open rectangle (0,£¢) x (0,T) and a continuous function on the
closure of this rectangle, then the maximum of the function u is assumed either
on the line (0,£) x {0} or on one of the lines

{0y xfo,7],  {&x[0,T].

Also, use the maximum principle to prove the uniqueness of solutions of the
boundary value problem with initial condition for the diffusion equation. Hint:
Use calculus (see [171, p. 41]).

Exercise 3.31. Solve the PDE (3.82) by the method of separation of variables;
that is, assume that there is a solution of the form u(z,t) = p(z)q(t), substitute
this expression into the PDE, impose the boundary conditions, and determine

the general form of the functions p and ¢.

Using the explicit form of the Fourier series representations of the gen-
eral solutions of the heat equation with Dirichlet or Neumann boundary
conditions, we can see that these solutions are very much like the solutions
of a homogeneous linear ordinary differential equation: They are expressed
as superpositions of fundamental solutions and they obviously satisfy the
flow property o, (p:(v)) = @s4:(v) as long as s and ¢ are not negative (the
series solutions do not necessarily converge for ¢t < 0). Because of this re-
striction on the time variable, the solutions of our evolution equation are
said to be semi-flows or semi-groups.

In the case of Dirichlet boundary conditions, if we look at the series
olution, then we can see immediately that the origin is in fact globally
asymptotically stable. For the Neumann problem there is a one-dimensional
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invariant manifold of rest points, and all other solutions are attracted expo-
nentially fast to this manifold. Physically, if the temperature is held fixed
at zero at the ends of the bar, then the temperature at each point of the bar
approaches zero at an exponential rate, whereas if the bar is insulated at
its ends, then the temperature at each point approaches the average value
of the initial temperature distribution.

Our discussion of the scalar diffusion equation, PDE (3.82), has served
to illustrate the fact that a (parabolic) PDE can be viewed as an ordinary
differential equation on an infinite dimensional space. Moreover, as we have
seen, if we choose to study a PDE from this viewpoint, then our experience
with ordinary differential equations can be used to advantage as a faithful
guide to its analysis.

Exercise 3.32. Verify the semi-flow property s (0(v)) = s4+(v) for the solu-
tions of the scalar heat equation with Dirichlet or Neumann boundary conditions.
Generalize this result to the equation u: = Uzz + f(u) under the assumption that
every initial value problem for this equation has a local solution. Hint: How is
the flow property proved for finite dimensional autonomous equations?

Let us now consider the nonlinear PDE
u = kugz + f(0, T, 1), 0<z<t t>0 (3.86)

where f is a smooth function that represents a heat source in our heat

conduction model.
To illustrate the analysis of rest points for a nonlinear PDE, let us as-

sume that the source term f for the PDE (3.86) depends only on its first
variable, and let us impose, a8 usual, either Dirichlet or Neumann boundary
conditions. In this situation, the rest points are given by those solutions of
the ordinary differential equation

Rugs + f) =0 (3.87)

that also satisfy the Dirichlet or Neumann boundary conditions.

The boundary value problem (3.87) is an interesting problem in ordinary
differential equations. Let us note frst that if we view the independent
variable as “time,” then the second order differential equation (3.87) is just
Newton’s equation for a particle of mass k% moving in a potential force
field with force —f(u). In addition, the corresponding first order systerm in
the phase plane is the Hamiltonian system

U=, v:_f(u)

whose total energy is given by

k? 5
H(u,v) = Ev + F(u)
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<

FIGURE 3.7. Phase portrait of the system 4 = v © = —u 4+ u>.

where F, the potential energy, can be taken to be

Flu) = / " Flw) dw,

and, as we know, the phase pl i i
. plane orbits all lie on cur
We will use these facts below. ves of constant energy:
boﬁ fSt point of the PDE (3.86) with our special form of f and Dirichlet
. Itl ary condlthns corresponds to a trajectory in the phase plane that
i) ar sh on the v-axis and returns to the v-axis again exactly at time z = £
n c;: e other hand, a rest point for the PDE with Neumann boundar};
COon ltIOI‘IS corresponds to a trajectory in the phase plane that starts o
the u-axis and returns to the u-axis at time z = £. "
Télo(;lgh the nor.llinea.r .boundary value problems that have just been de-
scribed are very difficult in general, they can be “solved” in some important

SpeClal cases. AS an example 1et us COHSldeI the fOHOWln ])11 1(:1 lle' b()ll]ld-
3 g

Ut = Ugg +u — B, w(0,t) =0, wu(f,t)=0 (3.88)
(see Exercise 3.35 for Neumann boundary conditions). Note first that th
consttzfmt functions Wit:‘;h values 0 or £1 are all solutions of the differentia?
%qi;li ﬁ;)r; %m +u—u = 0 However, only the zero solution satisfies the
richle oundary conditions. Thus, there is exactly one constant rest
point. Let us determine if there are any nonconstant rest points ”

phase plane sys C S Yy
I he h c la e tem corre Ondln to the €,
( ) P g st ad state equatlon fOI‘

U =1, 13=~u+u3.

It ha,T saddle poin‘ts at (+1,0) and a center at (0,0). Moreover, the period
annulus surrounding the origin is bounded by a pair of heteroclinic orbits



258 3. Applications

that lie on the curve

1

(see Figure 3.7). Using this fact, it is easy to see that thf: in.terval. 0,1/ V2)
on the v-axis is a Poincaré section for the annulus of periodic orblts‘,. Also, a
glance at the phase portrait of the system shows that only the solutions tl’;a.t
lie on these periodic orbits are candidates for nonconstant steady states gr
the PDE; they are the only periodic orbits in th(? phase plane that meet t e
v-axis at more than one point. Also, let us n0t1.ce that the pha§e portrﬁ}t
is symmetric with respect to each of tl}e coordinate axes. In view of this
symmetry, if we define the period function

T:(0, 1) R (3.89)

V2
so that T(a) is the minimum period of the periodic solution starting at
u(0) = 0, v(0) = a, then

u(%T(a)) o, 'u(%T(a)) —

Hence, solutions of our boundary value problem tl"xat correspond to ‘regt
points for the PDE also correspond to periodic' solutions whose half periods
are exactly some integer submultiple of £; equivalently, these solutlofszczor-
respond to those real numbers a such that 0 < a < 1/+/2 and T'(a) = t/ln
for some positive integer n. In fact, each such a corresponds to exa}? y
two rest points of the PDE; namely,  — u(z) and z > u(f — :c()) w_ ere
z > (u(z),v(z)) is the phase trajectory such that ©(0) =0 an.d v(0) = a.
The number and position in the phase plane of all rest pomt.s.olutxon‘s
of the PDE can be determined from the following three pro?951t1/ons: (z())
T(a) — 2m as a — 07; (i7) T(a) — oo 85 @ — (1/+/2)7; and (z?z) T'(a) >
(see Exercise 3.33). Using these facts, it follows t.hat there is at most i
fnite number of rest points that correspond to the integers 1,2,... ,n suc

that n < £/x.

Exercise 3.33. Prove that the period function T’ given in <.ii'splz.iy (3.89) h;s z:
positive first derivative. One way to do this is to find t:.he explicit t;me-'depeﬁ‘ etn
periodic solutions of the first order system @ = v, ¥ = —u + u” using eiiptic
functions. For a different method, see [29] and [153].

Exercise 3.34. Find the rest points for the Dirichlet boundary value problem
W = Uz + au — b’ u(z,0) =0, u(z,£)=0

{see [35]).
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Are the rest points of the PDE (3.88) stable? It turns out that the sta-
bility problem for nonconstant rest points, even for our scalar PDE, is too
difficult to describe here (see [162, p. 530]). However, we can say some-
thing about the stability of the constant rest point at the origin for the
PDE (3.88). In fact, let us note that if £ < m, then it is the only rest point.
Moreover, its stability can be determined by linearization.

Let us first describe the linearization procedure for a PDE. The correct
formulation is simple if we view the PDE as an ordinary differential equa-
tion on a function space. Indeed, we can just follow the recipe for linearizing,
an ordinary differential equation of the form @ = g(u). Let us recall that if

z is a rest point and g is a smooth function, then the linearization of the
ordinary differential equation at z is

& = Dg(z)(z ~ 2),

or equivalently
w =.-Dg(z)w

where w := z — 2. Moreover, if the eigenvalues of Dg(2) all have negative
real parts, then the rest point z is asymptotically stable (see Section 2.3).

In order to linearize at a rest point of a PDE, let us suppose that the
function z + 2(z) is a rest point for the PDE

k u; = g(u)

where g(u) := ugq + f(u) and f : R — R is a differentiable function. If the
domain of Ap is viewed as the function space C2[0, ], then the function
g : C?0,£] — C°[0,4] is differentiable. This follows because the function
U > Ugg is linear and the function f is smooth. However, we have to be
careful. In the definition of g we must view the notation f(u) to mean fou
where u € C?[0,€). The difficulty is that the smoothness of the function
u — fou depends on the topology of the function space to which « belongs
(see Example 1.153).

-Once we know that g is differentiable, its derivative can be easily com-
puted as a directional derivative; in fact,

4 ,
Dg(2)v = Eg(z + tv) yg — Uas + Df(z)v.

Therefore, by definition, the linearized equation at the rest point z is given
by

W = Wgy + Df(z(z))w. (3.90)

For a nonconstant rest point, the linearized equation (3.90) depends on
the space variable z. The determination of stability in this case is often
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quite difficult—-recall the stability analysis for periodic solutions of finite
dimensional ordinary differential equations. For a constant rest point, the
linearized equation has the form @ = Aw where A is the linear operator
given by w > wea+Df(2)w for za fixed number. In this case, as mentioned
previously, it seems natural to expect the following result: If the spectrum
of A is in the open left half plane and bounded away from the imaginary
axis, then the rest point is asymptotically stable. In fact, this result, when
properly interpreted, is true for the PDE (3.88). But to prove it, we have
to specify the function space on which the spectrum is to be computed and
recast the arguments used for ordinary differential equations in an infinite
dimensional setting. For the PDE (3.88) the idea—derived from our study
of ordinary differential equations—of applying the principle of linearized
stability is justified, but some functional analysis is required to carry it
out (see [162, Chapter 11}). However, our example is perhaps too simple;
there are PDE where the linearized stability of a steady state can be easily
proved, but the stability of the rest point is an open question. The problem
for a general PDE of the form

ut=Au+f(u)

is that the linear operator A, the function f, and the linearized operator
A+D f(z) must all satisfy additional hypotheses before the ODE arguments
for the validity of the principle of linearized stability can be verified in the
infinite dimensional case. This fact is an important difference between the
theory of ordinary differential equations and the theory of PDE.

Let us put aside the theoretical justification of linearized stability and re-
consider the rest point at the origin for the PDE (3.88) where the linearized

system is given by v
Wy = Weg + W, w(0) =0, w(f)=0.
In this case, the spectrum of the differential operator defined by
Aw = Wy + W

consists only of eigenvalues (see Exercise 3.29). In fact, using the analysis
of the spectrum of the operator w — Wz given above, the spectrum of A
is easily obtained by a translation. In fact, the spectrum is

{1— (%73)2 n=12... ,oo}.
- () - (7))

the spectrum of A lies in the left half of the complex plane and is bounded
away from the imaginary axis if and only if 1 < 72/£2. Hence, using this

Because
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fact and assuming the validity of the principle of linearized stability, we
have the following proposition: If £ < «, then the origin is the only stejad
state and it is asymptotically stable. y

Let us go one step further in our qualitative analysis of the PDE u; =
Usa +' f(u) by showing that there are no periodic solutions. In fact tfhis
claim is true independent of the choice of £ > 0 and for an arbitrary srr’looth
source function f. The idea for the proof, following the presentation in [162]
is to show that there is a function (essentially a Lyapunov function) that,
decreases on orbits. In fact, let us define

E(w) = — /0 ‘ (%u(z)um(z) + F(u(z))) da

where F' is an antiderivative of f and note that

E= _/f (lu U L
, \2 tUzg + Euut:cz + f(U)ut> dz.

After integration by parts twice for the integral of the second term in

the integrand, and after imposi i iri
: posing either Dirichlet or Neumann b
conditions, it follows that 7 boundary

. e e
B= = [ e+ f@)uedo = = [ (e + () d.

Her}ce, except for the rest points, the time derivative of E is negative along
orbits. In particular, there are no periodic orbits. Can the function E be
used to give a proof of the stability of the rest point at the origin?

.For the PDE (3.88) with £ < 7 we have now built up a rather complete
picture of the phase portrait. In fact, we know enough to conjecture that

uniqg p Yy .
g
] €re 1S a un 1e rest oint ]lal 1S IOball asynlptotlcally Stable IS thlS

Exercise 3.35. Analyze the existence of rest points, the stability types of con-

stant rest points, i
tar p and the phase portrait for the Neumann boundary value prob-

Uy = Ugg +u — 0, uz(0,8) =0, uz(4t)=0.

Note that there are three constant re .
.
st p()llltS Use equatlon (390) to determine

3.6.2 Galérkin Approximation

Since most differential equations, ODE or PDE, cannot be “solved,” it is
N N ?
natural to seek approximate solutions. Of course, numerical methods are

v used all the time to obtain approximate values of state variables. However,
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in theory and practice the utility of approximation methods goes far beyond
pumber crunching; for example, approximations are used to gain insight
into the qualitative behavior of dynamical systerns, to test computer codes,
and to obtain existence proofs. Indeed, approximation methods are central
elements of applied mathematics.

In this section we will take a brief look at a special case of Galérkin’s
method, one of the classic approximation methods for PDE. However, let
us note that CGalérkin’s method is just one of an array of methods that
are based on the idea of finding finite dimensional approximations of in-
finite dimensional dynamical systems. Many other methods are based on
the idea of finding finite dimensional invariant (or approximately invariant)
submanifolds in the infinite dimensional phase space. Of course, rest points
and periodic orbits are finite dimensional invariant submanifolds. But these
are only the simplest examples. In fact, let us note that a rest point or a
periodic orbit might have an infinite dimensional stable manifold and a
finite dimensional center manifold. In this case, the local dynamical behav-
ior is determined by the dynamics on the center manifold because nearby
orbits are attracted to the center manifold. An important generalization of
this basic situation is the concept of an inertial manifold. By definition, an
inertial manifold M is a finite dimensional submanifold in the phase space
that has two properties: M is positively invariant, and every solution is
attracted to M at an exponential rate (see [174]).

In general, if there is an attracting finite dimensional invariant manifold,
then the dynamical system restricted to this invariant set is an ordinary
differential equation that models the asymptotic behavior of the full in-
finite dimensional PDE. In particular, the w-limit set of every solution
lies on this manifold. Thus, the existence of such an invariant manifold
provides the theoretical basis for a complete understanding of the infinite
dimensional dynamical system using the techniques of ordinary differential
equations. However, it is usually very difficult to prove the existence of at-
tracting invariant manifolds. Moreover, even if an invariant manifold does
exist, it is often very difficult to obtain the detailed specification of this
manifold that would be required to reduce the original infinite dimensional
dynamical system to an ordinary differential equation. As an alternative,
an approximation method-—such as Galérkin’s method—that does not re-
quire the existence of an invariant manifold can often be employed with
great success.

The following philosophical question seems to accompany all theoreti-
cal approximation methods for PDE “Is the set of reduced equations—
presumably a system of nonlinear ordinary differential equations—easier
to analyze than the original PDE?” In general, the answer to this ques-
tion is clearly “no.” However, if the finite dimensional approximation is
“low dimensional” or of some special form, then often qualitative analysis
is possible, and useful insights into the dynamics of the original system can
be obtained. Perhaps the best “answer” to the question is to avoid the im-
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plied choice between infinite dimensional and finite dimensional analysis
The best approach to an applied problem is with a mind free of prejudice.
Often §evera1 different methods, including physical thinking and numericai
analysis, are required to obtain consistent and useful predictions from a
model.

Let us begin our discussion of the Galérkin approximation method with
an elementary, but key idea. Recall that a (real) vector space H is an inner
product space if there is a bilinear form (denoted here by angle brackets)
such that if h € H, then (h,h) > 0 and (h,h) =0 if and only if h = 0. It -
follow§ immediately that if v € H and (v,h) =0 for all h € H, then v _ 0
We will use this simple fact as the basis for solving equations ?in the space:
H. Indeed, suppose that we wish to find a solution of the (linear) equation

Au =b. (3.91)

If t.here is a vector ug € H such that (Aug — b, h) == 0 for all h € H, then
ug is a solution of the equation. ,

If we identify a subspace S C H and find ug € S such that
{Aus —b,s) =0

for all s € S, then ug is called a Galérkin approzimation of a solution
of equation (3.91). Of course, every h € H is an “approximation” of a
iolutmn! The idea is to consider a sequence of subspaces, S; C Sy C - - - that
converge” to H, and the corresponding Galérkin approximations u,, € S,
such that (Au, —b,s) =0 for all s € S,.. In this case, we might expegt thai

the sequence ui, iz, ... CONverges to a solution of the equation (3.91).
If H is a finite dimensional inner product space and the subspaces
SlaSZ7S37- .-

are st.rictly nested, then a corresponding sequence of Galérkin approxima-
jmonsils finite. Thus, we do not have to worry about convergence. However
if H is an infinite dimensional Hilbert space, then the approximating sub:
spaces must be chosen with care in order to ensure the convergence of the
sequence of Galérkin approximations.

Let us recall that a sequence B = {1;}32, of linearly independent ele-
ments in H is called a Hilbert space basis if the linear manifold S spanned
!ay B—all finite linear combinations of elements in B—is dense in H; that
is, if h € H, then there is a sequence in § that converges to & in the nz;tural
norm defined from the inner product.

Suppose that H is a Hilbert space, B = {14}, is a Hilbert space basis
for H, and A: H — H is a linear operator. Also, for each positive integer
n let S, denote the linear manifold spanned by the finite set {11,... ,v,}
The Galérkin principle may be stated as follows: For each positi\,re in,teger'
n, there is some u,, € S,, such that (Au, —b,s) = 0 for all s € §,,. Moreover
the sequence {u,}32, converges to a solution of the equation Au = b. ’
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The Galérkin principle is not a theorem! In fact, the Galérkin approxima-
tions may not exist or the sequence of approximations may not converge.
The applicability of the method depends on the equation we propose to
solve, the choice of the space H, and the choice of the basis B.

As an illustration of the Galérkin method applied to a PDE, let us con-
sider the steady state equation

Ugy + f(2) =0, 0<z<{, {(3.92)

with either Dirichlet or Neumann boundary conditions where f is a smooth
function. We will formulate a variational (weak) form for this boundary
value problem. The basic idea is based on the fact that if uis a solution of
the PDE (3.92), then

/ e(uzz +flpdz =0 (3.93)
0

whenever ¢ is a square integrable function defined on [0,4]. In the Hilbert
space L2(0,£) (see display (3.85)), the inner product of two functions v and
w is

2
{v,w) :=/0 v(z)w(z) dz.

Therefore, if u is a solution of the PDE, then equation (3.93) merely states
that the inner product of ¢ with the zero function in L? vanishes. Moreover,
if we define the operator Au = u.; and the function b = f, then (Au —
f, ¢) = 0 whenever ¢ is in the Hilbert space L?(0,£). Turning this analysis
around, we can look for a function u such that (Au - f, ¢) = 0 for all
¢ in L?. Roughly speaking, in this case u is called a weak solution of the
PDE. However, if we wish to apply the Galérkin method to the PDE (3.92),
then we have to face the fact that although L2 spaces are natural Hilbert
spaces of functions, the elements in L? are not necessarily differentiable. In
particular, the operator A is not defined on L2(0,4).

In which Hilbert space should we look for a solution? By asking this
question, we free ourselves from the search for a classical or strong solution
of the PDE (3.92), that is, a twice continuously differentiable function that
satisfies the PDE and the boundary conditions. Instead, we will seek a
weak solution by constructing a Hilbert space H whose elements are in
L2 such that a Galérkin formulation of our partial differential equation
makes sense in H. If our boundary value problem has a classical solution,
and we choose the Hilbert space H as well as the Galékin formulation
appropriately, then the L? equivalence class of the classical solution will
also be in H. Moreover, if are fortunate, then the weak solution of the
boundary value problem obtained by applying the Galérkin principle in H
will be exactly the equivalence class of the classical solution. :
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To construct the appropriate Hilbert space of candidate solutions for

the equation (3.93), let us first formally apply the fundamental method for
PDE, namely, integration by parts, to obtain the identity

v
/0 (Upe + f)opdz = ugdd

¢
z —/0 (up s — f¢) dz. (3.94)

If the functions ¢ and u are sufficiently smooth so that the integration by
parts is valid, then equation (3.93) is equivalent to an equation involving
functions and only one of their derivatives with respect to the variable z,
namely, the equation

¢ '3
= /0 féda. (3.95)

¢
/ Ug Oy AT — Uz P
0

In other words, to use equation (3.95) as a Galérkin formulation of our
boundary value problem, it suffices to find a Hilbert space H whose ele-
ments have only one derivative with respect to z in L2, Moreover, suppose
that such a Hilbert space H exists. If we find a function v € H such that
equation (3.95) holds for all ¢ € H and u happens to be smooth, then the in-
tegration by parts is valid and we also have a solution of equation (3.93) for
all smooth functions ¢. Using this fact, it is easy to prove that u satisfies the
PDE (3.92) pointwise, that is, u is a classical solution (see Exercise (3.36)).

Exercise 3.36. Suppose that v is 2 C* function. If equation (3.93) holds for
every ¢ € C*°, then prove that uzz + f(z) = 0.

If Dirichlet boundary conditions are imposed, then the boundary condi-
tions must be build into the Hilbert space H of test functions from which we
select ¢. In other words, we must impose the condition that the test func-
tions satisfy the Dirichlet boundary conditions. The appropriate Hilbert
space is denoted H} (0, £). To define it, let us first define the Sobolev norm
for a smooth function ¢ as follows:

ot = ([ #erw)+ ([ o 00)"

The subscript on the norm indicates that one derivative of ¢ is in L?. The
definition of the Sobolev norms with n derivatives taken into account is
similar. Also, note that the Sobolev norm is just the sum of the L? norms
of ¢ and its first derivative. The Sobolev space HJ(0,£) is defined to be
the completion, with respect to the Sobolev norm, of the set of all smooth
functions that satisfy the Dirichlet boundary conditions and have a finite
Sobolev norm; informally, “the space of functions with one derivative in
L2_” ) :
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Using the Sobolev space H{ (0, £), we have the following Galérkin or weak
formulation of our Dirichlet boundary value problem: Find u € HL(0,9)
such that

¢ 4
(u,6) = /0 Uaby do = /0 fédz = (f,4) (3.96)

for all ¢ € H}(0,£). If u is a weak solution of the Dirichlet boundary value
problem, then, using the definition of the Sobolev space, we can be sure
that u is the limit of smooth functions that satisfy the boundary conditions.
However, u itself is only defined abstractly as an equivalence class, thus it
only satisfies the boundary conditions in the generalized sense, that is,  is
the limit of a sequence of functions that satisfy the boundary conditions.

For the Neumann boundary value problem, again using equation (3.94),
the appropriate space of test functions is H'(0,£), the space defined just
like H} except that no boundary conditions are imposed. This requires a bit
of explanation. First, we have the formal statement of the weak formulation
of the Neumann problem: Find a function « in H'(0, £) such that, with the
same notation as in display (3.96),

(u,8) = (£, 9)

for all ¢ € H'(0,¢). We will show the following proposition: If u is smooth
enough so that the integration by parts in display (3.94) is valid and the
equivalence class of v in H(0,¢) s d weak solution of the Neumann prob-
lem, then u satisfies the Neumann boundary conditions. In fact, if ¢ €
H{(0,€), then ¢ is a limit of smooth functions that satisfy the Dirichlet
boundary conditions. Thus, if we use integration by parts for a sequence
of smooth functions converging to ¢ in Hg(0,£) and pass to the limit, then

we have the identity
¢ ¢
—/ Ugpp dx = / fodx
0 0

for all ¢ € H}(0,4). In other words, uz, + f(z) is the zero element of
H}(0,4). By Exercise (3.37), the space H}(0,£) is a dense subspace of
H(0,£). Thus, it is easy to see that the identity

'"/Oeuza@dx = /Ozfqbdm

holds for all ¢ € H'(0,£). Finally, by this identity, the boundary term in
the integration by parts formula in display (3.94) must vanish for each ¢ €
H*'(0,£). This fact clearly implies that v satisfies the Neumann boundary
conditions, as required. Hence, our weak formulation is consistent with
the classical boundary value problem: If a weak solution of the Neumann
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boundary value problem happens to be smooth, then it will satisfy - the
Neumann boundary conditions.

Exercise 3.37. Prove that HE(0,£) is a dense subspace of H'(0,£).

Our analysis leads to the natural question “If a weak sqlution exists, then
is it automatically a strong (classical) solution?” The answer is “yes” for
the example problems that we have formulated here, but this imp(?rtantq
“regularity” result is beyond the scope of our discussion. Let us simply
remark that the regularity of the weak solution depends on the form of the
PDE. It is also natural to ask if our weak boundary value problems have
solutions. The answer is in the affirmative. In fact, the relevant theory is
easy to understand. We will formulate and prove a few of its basic res.ults.

Let us suppose that H is a real Hilbert space, that {, ) is a bilinear
form on H (it maps H x H — R), (, ) is the inner product on H , and
Il ll == (, )/? is the natural norm. The bilinear form is called continuous
if there is a constant ¢ > 0 such that

(2, 0)] < affufllo]

for all u,v € H. The bilinear form is called coercive if there is a constant
b > 0 such that

(u,u) > bllul?

forallu € H.

Theorem 3.38 (Lax—Milgram). Suppose that H is a real Hilbert space
and (, ) is a continuous and coercive bilinear form on H. If F is a bounded
linear functional F : H — R, then there is a unique u € H such that

(u, ¢) = F(9)

for every ¢ € H. Moreover,
1
< =|\F.
lull < SIEIl

Proof. The main tool of the proof is a standard result in Hilbert space
theory, the Riesz representation theorem: If F' is a bounded linear func-
tional, then there is a unique f € H such that F(¢) = (f, ) for'every
¢ € H (see [156]). In particular, this is true for the functional F' in the
statement of the theorem. . _ '

If u € H, then the function given by ¢ — (u, ¢) is a linear functlop.al on
H. To see that this functional is bounded, use the continuity of the bilinear
form t0 obtain the estimate

(u, #)| < allufl]#]
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and ‘note that ||ul| < oco. The Riesz theorem now applies to each such
functional. Therefore, there is a function A : H — H such that

(u, §) = (Au, )

for all ¢ € H. Moreover, using the linearity of the bilinear form, it follows

that A is a linear transformation.
It is now clear that the equation in the statement of the theorem has a

unique solution if and only if the equation Au = f has a unique solution

for each f € H.
By the continuity and the coerciveness of the bilinear form, if u, v, ¢ € H,

then
(A(u —v),¢) = (u—v,w) < aflu~ o4, (3.97)
(A(u —v),u—v) = (u—v,u—2) > bllu—v|> (3.98)

Also, by the Schwarz inequality, we have that

sup |(v,¢)| < [lvl],
llgli<1

and, for ¢ := (1/||v||)v, this upper bound is attained. Thus, the norm of
the linear functional ¢ — (w,¢) is |w||. In particular, using the inequal-
ity (3.97), we have

| Au— Avl| = sup (A(u—v),¢) < allu - v, (3.99)
[lw]<1

Define the family of operators A* : H — H by
Ap=¢—AAp- f), A>0,

and note that A*u = u if and only if Au = f. Thus, to solve the equation
Au = f, it suffices to show that for at least one choice of A > 0, the operator
A* has a unique fixed point.

By an easy computation using the definition of the norm, equation (3.97),
the Schwarz inequality, and equation (3.99), we have that

A M — AM|2 = (1 — 2Xa + A%a?)||u — o).

Note that the polynomial in A vanishes at A = 0 and that its derivative
at this point is negative. It follows that there is some A > 0 such that the
corresponding operator is a contraction on the complete metric space H.
By the contraction mapping theorem, there is a unique fixed point v € H.
Moreover, for this u we have proved that (u,u) = F(u). Therefore,

[l F) > (f,u) > bllul?,

and the last statement of the theorem follows. . O
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‘ The Lax-Milgram theorem is a classic result that gives us a “huntin
license” to seek weak solutions for our boundary value problems. One wag
to cons,_truct a solution is to use the Galérkin method described.above Ir};
fact, w1‘th the previously defined notation, let us consider one of the ﬁr.lite
dimensiona] Hilbert spaces S, of H, and note that by the Lax—Mil
theorem there is a unique u,, € S, such that . s

(Un, 8) = (£, 5) (3.100) .
for all s € S, with the additional property that

lunll < 1171 (3.101)

The Galérkin px:inciple is the statement that the sequence {u,}32 . con-
verges Fo t}%e unique solution u of the weak boundary value probl?a;nl. The
approximation wu,, can be expressed as a linear combination of the vectors

V1,-.. ,Vp that, by our choice, form a basis of the
subspace S,,.
are real numbers €1;... ,Cp sSuch that ? e s, there

n
Up = ZleIj.
j=1

Also, each element s € Sy, is given in coordinates by

n
s = E 8iV;.
i=1

Thus, the equatio . is given i ;
ti ons’ a n (3.100) is given in coordinates by the system of equa-

n
ch(ijyi):<fayi>, i=1,...7’L,
J=1

or, in the equivalent matrix form for th
e unkno
have the equation wn vector (Cly s cn)7 we

! <f7yl>
S E = N

Cn <f; Vn)

wher(fa 51’, cz?ll.ed t}%e s?zﬁ"ness matriz—the terminology comes from the the-
;);zroie :; asgl?lty—lst%;/en bg 8ij = (v5,14). Of course, by the Lax-Milgram
» © 15 invertible and the matrix system ca i
approtimntin y 1 be solved to obtain the
]?oes' the sequence of. approximations {un}x, converge? The first obser-
vation is that, by the inequality (3.101), the sequence of approximates is
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bounded. Let u be the weak solution given by the La?c-Milgram theorem.
Subtract the equality (un,s) = (f,s) from the equality (u,s) = (f,s) to
see that

(4= uny8) =0 (3.102)

for all s € Sy,. Also, using the coerciveness of the bilinear form, if ¢ € S,,,
then

bllu— unll® < (4 =ty 4 — Up) = (4~ Up, U — Uy, + § — )
:(u—um(p_un)'i'(u—umu"‘ﬁ)'

By equation (3.102) and the fact that both u, and ¢ are in S,, we have
the inequality :

blls — wn? < (u — tn, u ~ 9) < alfu— walffu— 9.
It follows that »
lu = ]l < Sl = @l (3.103)

for all ¢ € 5,,. .
Recall that the linear span of the sequence {v; }32, is assumed to be
dense in H. Hence, for each € > 0 there is some integer m and constants

Cl1,... ,Cm such that
m
||lu— chz/jﬂ <e.
i=1 -

Ifweset n=m and v = Z;’i‘__l ¢;v; in the inequality (3.103), then
a
= uall < B

In other words, the sequence of Galérkin approximations converges to the
weak solution, as required. . . |
In the context of the steady state problem with which we star.ted, namely,
the PDE (3.92), the Lax-Milgram theorem applies (see Exerc.ls‘e 3.39). If,
for example, we consider Dirichlet boundary conditions, the bilinear form

v
(u,v) =/ Uy Vg AT
0
in H}, and

j SN
vj(z) :=sin s, flz) = Zlfj S =2,
=
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then the Galérkin approximation is easily computed to be

n .
LN2  ix :
un(z) = ; (E) fisin 7% (3.104)
exactly the partial sum of the usual Fourier series approximation (see Ex-
ercise 3.40).

Exercise 3.39. Prove that the bilinear form
)
(u, ) :/ Uy Uz dT
0

is continuous and coercive on the spaces H} and H*:,

Exercise 3.40. Find the stiffness matrix for the Galérkin approximation for

the PDE (3.92) with Dirichlet boundary conditions using the basis given by
v;(z) :;sin%x, i=12,...,00

for Hj, and verify the approximation (3.104). Also, consider the PDE (3.92)

with Neumann boundary conditions, and find the Galérkin approximations cor-

responding to the basis

T , 7L
—,8in —

1
, COS 7 7

We have now seen one very simple example where the Galérkin principle
can be turned into a theorem. Let ‘us take this as a prototype argument to
Jjustify the Galérkin principle. However, our main objective in this section
is to see how the Galérkin method leads to problems in ordinary differential
equations. For this, let us consider first the PDE

Ut = Uy + f(z,8), O<z<t, t>0 (3.105)

with either Dirichlet or Neumann boundary conditions, and let us work
formally.

The weak form of our boundary value problem is derived from the inte-
gration by parts formula

4 4 Vi
/ (Ut — Uge — f(z,8))pdz :/ (ue¢ + uzde — f(a, ))pdr — ugé o
0 0
Just as before, we can formulate two weak boundary value problems.

The Dirichlet Problem: Find u(z,t), a family of functions in H(0,2)
such that

¥4 ¥4
/ (6 + o) ds = / fodo
0 1]
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for all ¢ € HE(0,£).

The Neumann Problem: Find u(z,t), a family of functions in H'(0,4)
with the same integral condition satisfied for all ¢ € H(0,£).

To apply the Galérkin method, choose v, vy, ... a linearly independent
sequence whose span is dense in the Hilbert space HL0,€) or H(0,£), and
define the finite dimensional spaces S,, as before. The new wrinkle is that
we will look for an approximate solution in the subspace S, of the form

Uun(e,t) = Y _ c;(t)v;(x)

j=1

where the coefficients are differentiable functions of time. According to the
Galérkin principle, let us search for the unknown functions ¢i,... ¢, so
that we have (un,s) = (f, s) for all s € S,,. Expressed in coordinates, the
requirement is that the unknown functions satisfy the system of n ordinary
differential equations

n

¢ n ¢ ¢ :
Zc;-(t)/o Vjuid:v—f-;cj(t)/o (Vj)m(Vi)zdIE:/o fvidz

J=1

indexed by ¢ = 1,...,n. In matrix form, we have the linear system of
ordinary differential equations

MC' + 8C = F(t)

where M, given by

Y] -
Mij = / viv; dx
0

is called the mass matriz, S, given by

13
S-L'j ZZ\/O (Vj)z(lli)z dz

is the stiffness matrix, and C := (c1,... ,c,). If the initial condition for
the PDE (3.105) is u(z,0) = uo(z), then the usual choice for the initial
condition for the approximate system of ordinary differential equations is
the element uf € S, such that

(ug, s) = (uo, 8)

for all s € Sy,. This “least squares” approximation always exists. (Why?)
We have, in effect, described some aspects of the theoretical foundations

of the finite element method for obtaining numerical approximations of

PDE (see [170]). But a discussion of the techniques that make the finite
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element method a practical computational tool is beyond the scope of this
book.

The Galérkin method was originally developed to solve problems in elas-
ticity. This application yields some interesting dynamical problems for the
corresponding systems of ordinary differential equations. Let us consider,
for instance, the PDE (more precisely the integro-PDE),

1 .
Ugzer + (a -8B / u? dm) Ugz + Yz + 6up + €ty =0
0

that is derived in the theory of aeroelasticity as a model of panel flutter
(see for example the book of Raymond L. Bisplinghoff and Holt Ashley (22,
p- 428] where the physical interpretation of this equation and its param-
eters are given explicitly). We note in passing that this reference is full
of Galérkin approximations, albeit Galérkin approximations of linearized
equations. In fact, Galérkin approximations are commonplace in the theory
of aeroelasticity.
At any rate, let us take the boundary conditions

w(0,8) = u(L,t) =0,  Upa(0,t) = Uge(1,8) =0

given for this equation for “simply supported” panel edges. Of course,
u(z,t) represents the deflection of the panel. If we take just the first Fourier
mode, that is, the Galérkin approximation with trial function

uy (z,t) = c(t) sinwz,

then we obtain the equation
i
€&+ 6¢ + 72 (n® — a)e + 7[3@”‘ =0. (3.106)

Let us note that if 72 — a < 0, then this Galékin approximation is a
form of Duffing’s equation with damping. We have already developed some
of the tools needed to analyze this equation. In fact, most solutions are
damped oscillations whose w-limits are one of two possible asymptotically
stable rest points (see Exercise 3.41). However, if a periodic external force
is added to this system, then very complex dynamics are possible (see [96]
and Chapter 6).

Exercise 3.41. Draw representative phase portraits for the family of differen-
tial equations (3.106). How does the phase portrait depend on the choice of the
parameters?

Exercise 3.42. Consider the basis functions

v;j(z) = sin(jnz/f)
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for H3(0,£). Find the mass matrix and the stiffness matrix for the Galérkin
approximations for the weak Dirichlet boundary value problem (3.105) with
f(z,t) := sin(nxz/£) coswt. Solve the corresponding system of linear differential
equations for the nth approximation un(z;t). What can you say qualitatively
about the solutions of the Galérkin approximations? What long term dynamical
behavior of the PDE (3.105) is predicted by the Galérkin approximations? Find
a steady state solution? Repeat the analysis for f(z,t) = coswt. Do you see a
problem with our formal computations? Formulate and solve analogous problems
for Neumann boundary conditions.

Exercise 3.43. Consider a two (Fourier) mode Galérkin approximation for the
PDE .

U = kPuge +u—u® +acoswt, O0<z<i t>0

with either Dirichlet or Neumann boundary conditions. What is the “general
character” of the solutions in the phase plane? Start, for example, with the case
where there is a time-independent source term (e = 0) and consider the stability
of the steady state solution of the PDE at u = 0. Is the (linearized) stability
criterion for the PDE reflected in the stability of the corresponding rest point
in the phase plane of the approximating ordinary differential equation? Is the
w-Yimit set of every solution of the approximation a rest point?

3.6.3 Traveling Waves

The concept of traveling wave solutions will be introduced in this section
for the classic model system

ug = kK ugy + au(l —u), zeR, t>0 (3.107)

where k and a > 0 are constants.

The PDE (3.107), often called Fisher’s equation, can be used to model
many different phenomena. For example, this equation is a model of logistic
population growth with diffusion ([67], [132]), and it is also a model of
neutron flux in a nuclear reactor (see {140]). For a general description of
this and many other models of this type see [132] and [140].

Let us begin with the observation that equation (3.107) can be rescaled
to remove the explicit dependence on the system parameters. In fact, with
respect to the new time and space variables

a
T = kt, ==z (—IE),
equation (3.107) can be recast in the form
Uy = uge +u(l — u).

Therefore, with no loss of generality, we will consider the original model
equation (3.107) for the casea =1 and k = 1.
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The basic idea is to look for a solution of equation (3.107) in the form of
a traveling wave, that is,

w(z,t) = U(z — ct)

where the wave form is given by the function U : R — R and where the
wave speed is |¢| # 0. For definiteness and simplicity, let us assume that
¢ > 0. If we substitute the ansatz’ into Fisher’s equation, we obtain the
second order nonlinear ordinary differential equation

U+cU+U-U?=0
that is equivalent to the phase plane system
U=V, V=-U-cV+U2 (3.108)

All solutions of the system (3.108) correspond to traveling wave solutions
of Fisher’s equation. However, for applications, the traveling wave solutions
must satisfy additional properties. For example in biclogical applications,
u represents a population. Thus, to be physically meaningful, we must have
u 2>0.

In the original model equation, if there is no diffusion, then the model
reduces to the one-dimensional ordinary differential equation for logistic
growth @ = u — u? where there is an unstable rest point at u = 0, a stable
rest point at w = 1, and a connecting orbit, that is, an orbit with a-limit
set {0} and w-limit set {1}.

Is there a traveling wave solution u for the PDE (3.107) such that
0 < u(z,t) <1, and

. _ . 09
tl}_)l{.lo u(z,t) =1, tl}r_noo u(z,t).= 07

In other words, is there an orbit—for the PDE viewed as an infinite dimen-
sional ordinary differential equation—connecting the steady states u = 0
and u = 1 as in the case of the one-dimensional logistic model? An answer
to this question is given by the following proposition.

Proposition 3.44. There is o traveling wave solution (z,t) — u(z,t)
whose orbil connects the steady states u =0 and u = 1 with 0 < u(z,t) < 1
if and only if ¢ > 2.

Proof. Note that the solution u(z,t) = U(z — ct) is a connecting orbit if
0<U(s) <1, and
lim U(s) =0,

§—00

lim U(s) = 1.

The system matrix of the linearized phase plane equations (3.108) at the
origin has eigenvalues

HexV/E),
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v

/ :

FIGURE 3.8. The invariant region Q for the system (3.108) in case ¢ > 2.

and its eigenvalues at the point (1,0) are given by
%(—c +/c? +4).

Therefore, if ¢ > 0, then there is a hyperboli(.: sink at tl‘le On%'r; :nicslt Sa
hyperbolic saddle at the point (1,0). Moreover, if a connecting or 1t ;: s I;
then the corresponding phase plane solution s — (U(s)2 V(s))fnﬁls . i
the unstable manifold of the saddle and the s.ta‘ble. maquld of the SII{H .
Note that if ¢ < 2, then the sink at the origin is of spiral t'ype% e;l'ce,
even if there is a connecting orbit in this case, the corresponding function

U cannot remain positive. L '
Assume that ¢ > 2 and consider the lines in the phase plane given by

1
V= %(—c—i— Ve -4Hu, V= §(—c+ 2 +4)(U—1). (3.109)
They correspond to eigenspaces at the rest points. In~partiC}11ar, the;] seiig)n_(}
line is tangent to the unstable manifold of t'he saddle ‘pomt a.th (U, 1an—e
(1,0). The closed triangular region Q (Sf%e Flgure 3.8) in the phase tpivel
bounded by the lines (3.109) and the line given I?y v = 0 is postl e y
invariant. In fact, the phase plane vector field Pomts 11‘1t0 th1§ regu‘)ln ahevkrg
point on the boundary of Q except the rest points. This t:a.ct is easily checl i !
by computing the dot product of the vector ﬁ.eld with the a.pl;:roprla
normal fields along the lines. In fact, along the lines (8.109), we have

V- (et VAU =V 20,

V- %(—c+ Ve + U = (U -1)? >0, (3.110)

and V = —U + U? is negative for 0 <U < 1.
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Suppose (as we will soon see) that the unstable manifold at the saddle
intersects the region €. Then a solution that starts on this portion of the
unstable manifold must remain in the region 0 for all positive time. Thus,
the w-limit set of the corresponding orbit is also in Q. Because [/ <Q0in
, there are no periodic orbits in 2 and no rest points in the interior of €.
By the Poincaré-Bendixson theorem, the w-limit set must be contained in
the boundary of . In fact, this w-limit set must be the origin.

To complete the proof, we will show that the unstable manifold at the
saddle has nonempty intersection with the interior of £2. To prove this fact, -
let us first recall that the unstable manifold is tangent to the line given by
the second equation in display (3.109). We will show that the tangency is
quadratic and that the unstable manifold lies “above” this line. Our proof
of this fact is more complicated than is necessary. However, the method
used can be generalized.

In the new coordinates given by

Z=U-1, W =Y,
the saddle rest point is at the origin for the equivalent first order system
Z=W, W=2Z-cW+22

The additional change of coordinates

. 1
Z =P, W=Q+aP:=Q+—2-(—c+\/c2+4)P

transforms the system so that the unstable manifold of the saddle point is
tangent to the horizontal P-axis. We will show that the unstable manifold
is above this axis in some neighborhood of the origin; it then follows from
the second formula in display (3.110) that the unstable manifold lies above
the P-axis globally.

Note that the unstable manifold is given, locally at least, by the graph
of a smooth function Q = A(P) with h(0) = h'(0) = 0. Since this manifold
is invariant, we must have that @ = A’ (P)P, and therefore, by an easy
computation,

P? — (c+ a)h(P) = K (P)(h(P) + aP). (3.111)

The function h has the form h(P) = BP? + O(P3). By substitution of this
expression into equation (3.111), we obtain the inequality

B=(Bat+c)" >0,
as required. ]

Much more can be said about the traveling wave solutions that we have
Jjust found. A surprising fact is that all orbits of the PDE (3.107) start-
ing with physically realistic initial conditions have as their w-limit set the
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traveling wave solution with wave speed ¢ = 2. This fact was proved by
Andrei N. Kolmogorov, Ivan G. Petrovskii, and Nikolai S. Piskunov [103]
(see also [15] and [21]). For a detailed mathematical account of traveling
wave solutions see the book of Paul C. Fife [67] and also [132] and [162].

Exercise 3.45. Show that the PDE
ut—-uzux=um+u, zeR, t>0

has a nonconstant solution that is periodic in both space and time.

3.6.4 First Order PDE

Consider the special case of the model equation (3.80) where there is no
diffusion, but the medium moves with velocity field V; that is, consider the
differential equation

u; +ygradu-V = f. (3.112)

This is an important example of a first order partial differential equation.
Other examples are equations of the form

us + (f(u))x = Oa
called conservation laws (see [162]), and equations of the form
St +H(Sq7q7t) = 07

called Hamilton-Jacobi equations (see [10]). We will show how these PDE
can be solved using ordinary differential equations.

Let us consider the case of one space variable; the general case is similar.
If v = 1, then the equation (3.112) is given by

ug + 'U(:U, t)ux = f(u,a:,t),

or, with a redefinition of the names of the functions, it has the more general
form

f(ma Y, u)ua: + g(m, Y, u)uy = h(m, Y, U) (3113)

We will “solve” the PDE (3.113) using the following basic idea: If the
graph G of a function z = u(z, y) is an invariant manifold for the first order
system

t=f(z,y,2), 9=9(=92), 2=h(zy2), (3.114)

then u is a solution of the PDE (3.113). Indeed, using the results of Sec-
tion 1.7 and the fact that

(wa y) = (z,y,u(m,y),um(z, y),uy(z,y), _1)
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is a normal vector field on G, it follows that the manifold G is invariant
if and only if the dot product of the vector field associated with the sys-
tem (3.114) and the normal field is identically zero; that is, if and only if
equation (3.113) holds. The orbits of the system (3.114) are called charac-
teristics of the PDE (3.113).

Perhaps it is possible to find an invariant manifold for the first order
system (3.114) by an indirect method. However, we can also construct the
invariant manifold directly from appropriate initial data. To see how this
is done, let us suppose that we have a curve in space given by v : R — R3
such that in coordinates

v(s) = (71(s),72(s), 13(5))-
This curve is called noncharacteristic at v(0) if
F(4(0))12(0) — g(+(0))¥3(0) # 0.
Let ¢: denote the flow of the system (3.114), and define H : R? — R3 by
(8,t) = we(7(s))- (3.115)

Also, define H : R? — R? by projection of the image of H onto its first two
components. More precisely, let e;, e3, e3 be the usual basis vectors for R3
and let the usual inner product be denoted by angle brackets. Then H is
given by

(5,2) = ((0:(7(s)), €1), (e (7(5)), €2))-

We will show that H is locally invertible at «(0). For this, compute

d
DH(0,0)e1 = —H(r,0)

7=0

= 2 (n(s)m(s))|

= (11(0),72(0)),

7=0

and similarly

DH(0,0)ez = (f(71(0)), 9(72(0)))-

Because the curve «y is noncharacteristic at (0), the matrix representation
of DH(0,0) has nonzero determinant and is therefore invertible. By the
inverse function theorem, H is locally invertible at the origin.

Using the local inverse of H, let us note that

H(H N (z,y)) = (z,y, Hs(H (=, 1))
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In other words, if u(z,y) = H3(H !(z,y)), then the surface given by
the range of H is locally the graph of the function u. This completes the
construction of u; it is a local solution of the PDE (3.113).

We have now proved that if we are given initial data on a noncharacter-
istic curve, then there is a corresponding local solution of the PDE (3.113).
Also, we have a method to construct such a solution.

As an example, let us consider the model equation

uT+asin(wT)u$=u—u2, 0<z<1l, t>0

with initial data u(z,0) = ug(z) defined on the unit interval. A phenomeno-
logical interpretation of this equation is that u is the density of a species
with logistic growth in a moving medium that is changing direction with
frequency w and amplitude a. We have used 7 to denote the time parameter
so that we can write the first order system for the characteristics in the
form

T=1, z = asin(wT), 2=2—2%
To specify the initial data, let us define the noncharacteristic curve given
by s — (0,s,ug(s)). Then, after solving the first order system and using
the definition (3.115), we have that

etug(s)
H(s,t) = (t,s + %(1 — cos ut), ma‘(';(‘;‘(‘e‘z—_“l—)‘)

Also, because H! is given explicitly by

H_I(T, z)=(r,z— %(1 — cos uT)),

we have the solution

e"ug(z — 2(1 — cos ut))
u(z,t) = 14 (e — 1)11.()& - 41— cosut))’ (3:.116)

What does our model predict? For example, if the initial condition is
given by a positive function ug, then the w-limit set of the corresponding
solution of the PDE is the constant function v = 1, the solution corre-
sponding to no drift. However, if the initial population is distributed so
that some regions have zero density, then the fate of the initial population
is more complicated (see Exercise 3.46).

Exercise 3.46. What long term behavior for the corresponding model equation
is predicted by the solution (3.116)? How does your answer depend on the choice
of ug, a, and w?
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Exercise 3.47. Solve the PDE zu, + yu, = 2u with u prescribed on the unit
circle. Hint: Define the noncharacteristic curve

s — (cos s, sin s, h(cos s, sin s)).

Exercise 3.48. Find solutions of the PDE zu, — yu, = 2u. How should the
data be prescribed?

Exercise 3.49. A function U that is constant along the orbits of an ordinary

differential equation is called an invariant function, or a first integral. In symbols,

if we have a differential equation £ = f(z) with flow ¢, then U is invariant”
provided that U(¢:(z)) = U(z) for all z and ¢ for which the flow is defined. Show

that U is invariant if and only if (grad U(z), f(z)) = 0. Equivalently, the Lie

derivative of U in the direction of the vector field given by f vanishes. Consider

the differential equation

é:l, q.S:a

where a € R. Also, consider both 6 and ¢ as angular variables so that the
differential equation can be viewed as an equation on the torus. Give necessary
and sufficient conditions on @ so that there is a smooth invariant function defined
on the torus.

Exercise 3.50. A simple example of a conservation law is the (nonviscous)
Burgers’ equation u; + wu. = 0. Burgers’ equation with viscosity is given by

Ut + UUgy = Uz

1
Re
where Re is called the Reynold’s number. This is a simple model that incorporates
two of the main features in fluid dynamics: convection and diffusion. Solve the
nonviscous Burgers’ equation with initial data u(z,0) = (1 — )/2 for —1 <
z < 1. Note that the solution cannot be extended for all time. This is a general
phenomenon that appears in the study of conservation laws that is related to the
existence of shock waves (see [162]). Also, consider the viscous Burgers’ equation
on the same interval with the same initial data and with boundary conditions

u(—1,t) =1, u(1,t) = 0.
How can we find Galérkin approximations? The problem is that with the nonho-
mogeneous boundary conditions, there is no vector space of functions that satisfy

the boundary conditions. To overcome this problem, we can look for a solution
of our problem in the form

u(z,t) = v(z,t) + —;—(1 — )
where v satisfies the equation
1 1
v+ (v+ 5(1 ~z))(ve — 5) = Vzz

and Dirichlet boundary conditions. Determine the Galérkin approximations us-
ing trigonometric trial functions. Use a numerical method to solve the resulting
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differential equations, and thus approximate the solution of the PDE. For a nu-
merical analyst’s approach to this problem, consider the Galérkin approximations
with respect to the “test function basis” of Chebyshev polynomials given by

To(z) =1, Ti(z) ==z, To(z) = 22° — 1
and
Tni1(z) = 22Th(z) — Tn-1(z).

The Chebyshev polynomials are orthogonal (but not orthonormal) with respect
to the inner product defined by .

o= [ S@e1 -2 o

Moreover, the Chebyshev polynomials do not satisfy the boundary conditions.
However, proceed as follows: Look for a Galérkin approximation in the form

unlz, ) = 3 ci(t)Tnos (a),

ge=1
but only construct the corresponding system of differential equations for
Clyser 9Cn—2.

Then, define the last two coefficients so that the boundary conditions are satisfied
(see [69]). Compare numerical results. Finally, note that Burgers’ equation can,
in principle, be solved explicitly by the Hopf-Cole transformation. In fact, if u is
a solution of Burgers’ equation and 7 is defined so that 1> = u, then v is defined
up to a function that depends only on the time variable. An appropriate choice
of the antiderivative satisfies the equation ”

1, 1
¢t + §¢z - Red}a:z

If ¢ is defined by the equation ¢ = —(2/Re)¢, then

¢t = Ritﬁu

e

Thus, solutions of the heat equation can be used to construct solutions of Burgers’
equation. The fact that Burgers’ equation can be solved explicitly makes this PDE
a very useful candidate for testing numerical codes.

4
Hyperbolic Theory

The chapter is an introduction to the theory of hyperbolic structures in dif-
ferential equations. The basic idea might be called “the principle of hyper-
bolic linearization.” Namely, if the linearized flow of a differential equation
has “no eigenvalues with zero real parts,” then the nonlinear flow behaves
locally like the linear flow. This idea has far-reaching consequences that
are the subject of many important and useful mathematical results. Here
we will discuss two fundamental theorems: the center and stable manifold
theorem for a rest point and Hartman’s theorem.

4.1 Invariant Manifolds

One of the important results in the theory of ordinary differential equations
is the stable manifold theorem. This and many closely related results, for
example, the center manifold theorem, form the foundation for analyzing
the dynamical behavior of a dynamical system in the vicinity of an invariant
set. In this section we will consider some of the theory that is used to
prove such results, and we will prove the existence of invariant manifolds
related to the simplest example of an invariant set, namely, a rest point.
However, the ideas that we will discuss can be used to prove much more
general theorems. In fact, some of the same ideas can be used to prove
the existence and properties of invariant manifolds for infinite dimensional
dynamical systems.



