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We study the existence and stability of solutions of the two-dimensional nonlinear Schrödinger
equation in the combined presence of a parabolic and a periodic potential. The motivating physical
example consists of Bose–Einstein condensates confined in an harmonic �e.g., magnetic� trap and
an optical lattice. By connecting the nonlinear problem with the underlying linear spectrum, we
examine the bifurcation of nonlinear modes out of the linear ones for both focusing and defocusing
nonlinearities. In particular, we find real-valued solutions �such as multipoles� and complex-valued
ones �such as vortices�. A primary motivation of the present work is to develop “rules of thumb”
about what waveforms to expect emerging in the nonlinear problem and about the stability of those
modes. As a case example of the latter, we find that among the real-valued solutions, the one with
larger norm for a fixed value of the chemical potential is expected to be unstable. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2897311�

Herein, we consider the existence and stability of weakly
nonlinear solutions of a nonlinear Schrödinger equation
with a harmonic and a periodic potential in two space
dimensions. The form of the potential is motivated from
the dynamics of Bose–Einstein condensates in the pres-
ence of a magnetic trap and optical lattice. We use
Lyapunov–Schmidt theory to rigorously establish the ex-
istence of multipoles and vortices in the presence of at-
tractive and repulsive nonlinear interparticle interac-
tions. When considering the spectral stability of these
nonlinear solutions, we use another Lyapunov–Schmidt
analysis to develop a “rule of thumb” to determine which
of the multipoles are dynamically unstable. The results
are corroborated with numerical computations.

I. PHYSICAL MOTIVATION

In the past few years, there has been a tremendous focus
of research effort on the study of Bose–Einstein condensates
�BECs�.1,2 This context has provided a wide array of inter-
esting phenomena, not only because of the very precise ex-
perimental control that exists over the relevant setups,3 but
also because of the exciting connections that the field opens
with other areas of physics such as nonlinear optics and wave
theory. This is to a large extent due to the very efficient
mean-field description of BECs, based on a classical nonlin-
ear evolution equation of the nonlinear Schrödinger type;
namely, the Gross–Pitaevskii �GP� equation.1–3

The main novel feature offered in the context of the
current experimental realizations is the unprecedented con-
trol over the external potentials that are used to confine the
ultracold bosonic atoms. In particular, such confinement is
primarily harmonic, and was first implemented by magnetic
fields and later by optical fields as well; this type of confine-
ment is very accurately modeled by a parabolic potential at
the GP level. Optical fields are also used for the creation of a
periodic confining potential known as “optical lattice.” The
latter is generated by counterpropagating laser beams whose
interference produces the desired potential, and is modeled
by trigonometric periodic potentials in the GP equation. Rel-
evant reviews concerning the above features, and discussing
the dynamics of BECs, as well as the coherent nonlinear
structures arising in them, have already appeared. These in-
clude extensive studies on bright solitons in BECs,4 vortices
in BECs,5,6 instabilities in BECs,7 hydrodynamic/kinetic
theory aspects of the superfluid dynamics,8 and, finally, the
behavior of BECs in optical lattice potentials.9,10 Inasmuch
as the study of matter waves in BECs is an extremely active
area of research for which new books11 and reviews12 con-
tinue to emerge, we should alert the interested reader that
this list is meant to be representative rather than exhaustive.

It is well known that the effective nonlinearity, which is
induced by the interparticle interactions, sustains the exis-
tence of a variety of macroscopic nonlinear structures in the
form of matter-wave solitons which, importantly, have been
observed in experiments. These include bright solitons13 for
attractive interactions �focusing nonlinearity in the GP equa-
tion�, and dark solitons,14 as well as gap solitons,15 for repul-
sive interactions �defocusing nonlinearity in the GP equa-
tion�. One technique that has been perhaps slightly less used
�as compared to purely nonlinear dynamics techniques� for
the study of such structures relies on the continuation of
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linear states into nonlinear ones. This idea has been explored
at the level of the respective stationary problem for one-
dimensional and higher-dimensional �and particularly radi-
ally symmetric� states in the presence of harmonic trapping
�see, e.g., Refs. 16–18 and references therein�. On the other
hand, the dynamics of such nonlinear states arising from the
continuation of their linear counterparts has been explored
through the so-called Feshbach resonance management tech-
nique, which allows the temporal variation of the
nonlinearity.19 Finally, the same idea has also been explored
in the one-dimensional case from the point of view of bifur-
cation and stability theory �see, e.g., Ref. 20�. All of the
above studies were either at the level of one dimension or at
the level of multidimensions, but in the presence of an har-
monic trap only.

Our aim in the present work is to expand the analysis
presented in Ref. 20 to the two-dimensional setting. We will
provide a perturbative characterization of the nonlinear exis-
tence and stability problem from the linear limit for BECs
under magnetic and optical confinement. One of our goals is
to provide general rules of thumb for the characterization of
the types of states that bifurcate from the linear limit and of
their corresponding stability. In addition to the general fea-
tures, we provide a detailed analysis. In the case of the ex-
istence problem this determines the approximate nonlinear
solution profiles, which to leading order are appropriate lin-
ear combinations of the linear states. In the case of the spec-
tral stability problem, it allows us to evaluate the bifurcation
of both O���, where � represents the strength of the nonlin-
earity, and O�1� eigenvalues, which may lead to instability
through real pairs or complex quartets.

Our presentation is structured as follows. In Sec. II we
give the general mathematical framework of the problem and
some of the main theoretical conclusions. In Sec. III we
present some motivating numerical examples showcasing the
validity of our findings. We will then determine the existence
�Sec. IV� and stability �Secs. V and VI� of the solutions of
the nonlinear two-dimensional problem that emerge from the
linear limit. Finally, in Sec. VII we briefly summarize our
results.

II. MATHEMATICAL SETUP AND MAIN RESULTS

Consider the following GP mean-field model for a disk-
shaped �quasi-two-dimensional� BEC confined in both an
harmonic �e.g., magnetic� trap and an optical lattice �see,
e.g., Ref. 7 for the derivation and details on the normaliza-
tions�:

iqt + 1
2�q + �q + a�q�2q = � 1

2��x2 + y2� + V0�p�x� + p�y���q ,

�2.1�

where a� �−1, +1� is positive �negative� for attractive �re-
pulsive� interatomic interactions, ��R is the chemical po-
tential, ��R+ represents the strength of the magnetic trap,
V0�R represents the strength of the optical lattice, and
p�·� :R�R is L-periodic and even and is a model for the
optical lattice; finally, q represents the condensate’s mean-
field wavefunction. The above GP equation can be rescaled
in the so-called harmonic oscillator units, so that the strength

of the magnetic trap is independent of �. Thus, rescaling the
variables of Eq. �2.1� as

x̃ ª ��x, ỹ ª ��y, t̃ ª �t, �̃ ª

�

�
, q̃ ª

q
��

,

�2.2�

and dropping the tildes, the following equation is obtained:

iqt +
1

2
�q + �q + a�q�2q

= 	1

2
�x2 + y2� +

V0

�

p
 x

��
� + p
 y

��
���q . �2.3�

Notice that in the above formulation if 0���1, then the
optical lattice is rapidly varying with respect to the magnetic
trap. Furthermore, it is noted that once a solution q̃�x̃ , ỹ , t̃� to
Eq. �2.3� has been found, the solution to Eq. �2.1� is recov-
ered by

q�x,t� = ��q̃���x,��y,�t� .

It should also be mentioned here that the above mean-field
model is applicable for sufficiently weak optical lattices. For
strong optical lattices, quantum fluctuations become relevant
and the system enters into the Mott-insulating phase,21 which
invalidates the assumptions of the mean-field description
leading to the GP equation discussed herein.

The goal of this paper is to consider the existence and
spectral stability of small solutions to Eq. �2.3�. In particular,
we will consider steady-state solutions of the form

Q = �x1qj,k + y1qk,j + iy2qk,j��1/2 + O��� ,

where x1 , y1 , y2�R and qm,n is an eigenfunction for the
linear problem that has the property that there are m vertical
nodal lines and n horizontal nodal lines �see also Eq. �4.3��.
The particular values of x1 , y1, and y2 depend implicitly
upon the trap parameters V0 and �, as well as whether j+k is
odd or even �see Sec. IV�. The formal small parameter �
characterizes the size of the deviation from the linear limit in
our weakly nonlinear analysis. The following result will be
shown:

Proposition II.1: There exist two distinct steady-state
real-valued solutions to Eq. (2.3) for ��0 sufficiently small:

�a� Q=x1�qj,k+qk,j��1/2+O���, where x1 is given in Eq.
(4.10);

�b� Q=��cos 	 qj,k+sin 	 qk,j��1/2+O���, where � ,	 are
given in Eq. (2.3) (	=0 if j+k is odd).

There exists one distinct steady-state complex-valued so-
lution to Eq. (2.3) for ��0 sufficiently small:

Q = ��qj,k + ei	qk,j��1/2 + O��� ,

where �� ,	� is given in Eq. (4.18) (	=
 /2 if j+k is odd).
For all of the solutions, the chemical potential satisfies
�� j,k+�p� with a�p�0, where � j,k is defined in Eq. (4.2).

Remark II.2: If the optical lattice is not present, then
there will be only one distinct real-valued solution, and all
other real-valued solutions will be related via the SO�2� spa-
tial rotation symmetry. The lattice acts as a symmetry-
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breaking term that preserves the discrete D4 square symme-
try; hence, the existence of the second distinct solution.

Once the existence of these small waves has been deter-
mined via a Lyapunov–Schmidt reduction, we consider the
problem of determining the spectrum for the appropriate lin-
ear operator. There will be two sets of eigenvalues to con-
sider:

�a� the O��� eigenvalues which arise from the reduction;
�b� the O�1� eigenvalues that may possibly lead to oscilla-

tory instabilities via a Hamiltonian–Hopf bifurcation.

We completely characterize the location of the O��� ei-
genvalues analytically �see Sec. V�, and we find that:

�a� if j+k is odd, then the real-valued solution with the
larger number of particles for a fixed value of the
chemical potential is unstable, whereas the other one is
spectrally stable �at least with respect to the O���
eigenvalues�;

�b� if j+k is odd, then the complex-valued solution is spec-
trally stable �at least with respect to the O��� eigenval-
ues�;

�c� if j+k is even, then there is numerical evidence to sup-
port the conclusions of �a� and �b�.

We will only briefly discuss the unstable eigenvalues that can
be created via the Hamiltonian–Hopf bifurcation �see Sec.
VI�. Regarding the O�1� eigenvalues, we find that the
complex-valued solution will be spectrally unstable if the
ratio V0 /� lies in the HH vortex resonance band. Otherwise,
our analysis is inconclusive, and we need to numerically de-
termine the spectrum �see Sec. III for an example�.

III. NUMERICAL EXAMPLES

In this section we numerically show a motivational illus-
tration of the most fundamental case among the ones dis-
cussed in this work; namely, the one with �j ,k�= �0,1�. As
discussed in Proposition II.1, two distinct real solutions
emerge from the linear limit; namely, the mode involving
Qq1,0�

1/2 �related to q0,1�
1/2 via the discrete D4 square

symmetry� and the one involving Q�q1,0+q0,1��1/2. These
modes are related by SO�2� rotation symmetry in the limit of
V0=0, but become distinct for V0�0. This relationship is
clearly shown in panels �A�–�D� of Fig. 1, which show the
modes for V0=0 and V0=0.5. Figure 2 reveals their respec-
tive stability properties by showing the eigenvalues with
nonzero real parts �top panels of Fig. 1� as well as the
squared L2-norm, physically associated with the number of
atoms in the BEC �bottom panels of Fig. 1�. Additionally, in
panels �E�–�H�, we also show a complex-valued solution Q
�q1,0+ iq0,1��1/2 representing a vortex5,6 that is always
found to be spectrally stable.

Regarding the stability of the two real states, we note
that as indicated above the state Qq1,0�

1/2, which has the
larger norm �see the bottom panel of stability in Fig. 2�, is
indeed the one which is always unstable due to a real eigen-
value pair �see the top right panel of stability in Fig. 2�.
Additionally, that solution possesses the interesting feature,
illustrated in the top left panels of stability, that a second

unstable eigenmode arises due to an eigenvalue quartet for
0.05�V0�0.15, while for V0�0.17, one of the two pairs of
the quartet becomes real constituting a secondary instability
that eventually becomes the dominant mode, for sufficiently
large V0; this justifies the presence of two modes in panel A
of stability. On the other hand, as predicted, the solution Q
�q1,0+q0,1��1/2 is stable for small V0. However, for 0.09
�V0�0.39, it becomes unstable due to a complex eigen-
value quartet stemming from the collision of two pairs on the
imaginary axis; in fact, a second such quartet emerges for
0.3�V0�0.38. The bifurcation of these two quartets �both
as a function of V0 and as a case example for V0=0.35� is
shown in panels �d� and �e� of Fig. 2.

Finally, we have also investigated the dynamics of these
unstable solutions when evolved according to the original
Eq. �2.1�. In particular, in Fig. 3, the evolution of the solution
proportional to q1,0 for V0=0.1 and V0=0.5 �top and middle
panels of the figure, respectively�, and of the solution pro-

FIG. 1. Panels A and B show the solution proportional to q1,0 for V0=0 and
V0=0.5, respectively. Panels C and D show the same features for the second
distinct real mode; namely, the one proportional to q1,0+q0,1. The bottom
panels show the modulus �panels E and G� and phase �panels F and H� of
the vortex configuration proportional to q1,0+ iq0,1. These profiles have been
obtained for parameter values �=0.3 and �=1 and for a defocusing non-
linearity �a=−1�; profiles pertaining to the focusing nonlinearity �a= +1�
have also been similarly obtained.
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portional to q1,0+ iq0,1 for V0=0.25 �bottom panel� is shown.
In all the cases, we observe that the instability eventually
destroys the configuration leading to an oscillatory behavior.
It can be noted that the time that it takes for the perturbations
to manifest the instability is larger, the smaller the instability
growth rate. Furthermore, in the evolution with V0=0.1, the
optical lattice is fairly weak and the breakup dynamics �lead-
ing to alternations of the high density region� seem to have a
rotational character whereby these regions rotate around the
center of the condensate. This is not so in the case of the
strong lattice for V0=0.5, where the oscillatory density dy-
namics is present, but any rotation is absent. Finally, in the
bottom panel oscillatory dynamics between the two high
density lobes of the q1,0+ iq0,1 solution is also observed.

IV. EXISTENCE OF NONLINEAR SOLUTIONS

A. The eigenvalue problem

In order to apply the Lyapunov–Schmidt reduction to
find nonlinear solutions in the case of weak nonlinearity, one
must first understand the spectrum ��L� of the operator L
ªLx+Ly, where for � �x ,y�

FIG. 2. �Color online� Panel �a� shows the dependence of the most unstable
eigenvalues’ real part on V0 �top�, while panels �b� and �c� show two typical
examples of the spectral planes for V0=0.1 and V0=0.2, respectively, for the
solution proportional to q1,0. Panels �d� and �e� show corresponding features
for the solution proportional to q1,0+q0,1 �the spectral plane in panel �e� is
shown for V0=0.35�. Finally, panel �f� shows the squared L2 norms �propor-
tional to the number of atoms� for the two real �thin solid and dashed lines�
and the one complex �thick solid line� modes.

FIG. 3. �Color online� Panel �a� shows the space-time evolution of a typical
contour of the solution proportional to q1,0 for V0=0.1. Panel �b� shows the
same but for the case with V0=0.5, while panel �c� shows the solution
proportional to q1,0+q0,1 spatiotemporally evolving for the case with V0

=0.25. These results are for the same solution parameters, �=0.3 and �
=1 and a=−1, as used in profiles.
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L ª −
1

2
�

2 − � +
1

2
2 +

V0

�
p
 

��
� . �4.1�

Since L is the sum of one-dimensional Schrödinger opera-
tors, by using separation of variables one deduces that if
����L� with associated eigenfunction q, then �x+�y

���L� with associated eigenfunction qx�x�qy�y�. Thus, it is
sufficient to consider the operators L. A study of these op-
erators was done in Ref. 20, from which one can deduce the
following:

�a� ��L� is solely composed of point spectrum, and each
eigenvalue is simple;

�b� the eigenfunctions form a complete orthonormal
basis;

�c� each eigenfunction qn,�� satisfies the decay
condition

�qn,���e2/8 � C,  � R .

Let us order the simple eigenvalues of L as �0,��1,

�¯, and denote the associated eigenfunctions by qj,�·�.
Since p�·� is even, one has that qj,�·� is even if j is even, and
is odd if j is odd.

As will be further discussed in Sec. IV, it is of interest to
determine those solutions which arise from the linear limit in
which an eigenvalue has multiplicity 2 �see Ref. 22 for the
case of eigenvalues with multiplicity 3�. As stated above, the
eigenvalues of L are given by

� j,k ª � j,x + �k,y , �4.2�

and the associated eigenfunction is given by

qj,k�x,y� ª qj,x�x�qk,y�y� . �4.3�

In order for an eigenvalue to be semi-simple, one then re-
quires that

� j,k = � j�,k�

for some �j� ,k��� �j ,k�. Such a scenario easily arises, for
� j,k=�k,j for any pair of j ,k�N0 with j�k.

B. The Lyapunov–Schmidt reduction

If the eigenvalue is simple, then a straightforward appli-
cation of the Lyapunov–Schmidt reduction yields that there
is a small nonlinear solution of the form

Qj,k�x,y� = �qj,k�x,y� + O��2�

for � chosen so that �=� j,k+O��� �Ref. 23, Chap. 7�. Fur-
thermore, it can be shown that the bifurcation is subcritical if
a= +1, and is supercritical if a=−1 �see Sec. IV of Ref. 20�.

The interest herein will be the case that the geometric
multiplicity of the eigenvalue is 2. Note that Eq. �2.3� is
invariant under the actions

�q;x,y� � �− q;x,y�, �q;x,y� � �q;− x,y� ,

�q;x,y� � �q;x,− y�;

thus, the bifurcation equations derived via the Lyapunov–
Schmidt procedure will have a �Z2 � Z2�-symmetry. Further-

more, one has the gauge symmetry q�qei�. As noted in Sec.
IV A, one has that � j,k=�k,j for any j ,k�N0. It will hence-
forth be assumed in this section that � j�,k��� j,k for
�j� ,k��� ��j ,k� , �k , j��. Following the ideas presented in Ref.
22, choose � so that the nonlinear solution can be written as

Q = �x1qj,k + y1qk,j + iy2qk,j��1/2 + O��� ,

�4.4�
� = � j,k + �p� + O��3/2� ,

where x1 ,y1 ,y2�R. Here the gauge symmetry is being im-
plicitly used. Set �ªa�p. Upon using the Lyapunov–
Schmidt reduction, and the fact that qj,x�·�=qj,y�·�, one sees
that the bifurcation equations are given by

0 = x1�� + Ax1
2 + B�3y1

2 + y2
2�� + Cy1�3x1

2 + y1
2 + y2

2� ,

0 = y1�� + A�y1
2 + y2

2� + 3Bx1
2� + Cx1�x1

2 + 3y1
2 + y2

2� , �4.5�

0 = y2�� + A�y1
2 + y2

2� + Bx1
2 + 2Cx1y1� .

The coefficients in Eq. �4.5� are given by

A ª gjjjjgkkkk, B ª �gjjkk�2, C ª gjjjkgjkkk, �4.6�

where

gijk� ª �
−�

+�

qi,xqj,xqk,xq�,xdx .

Note that Eq. �4.5� inherits the �Z2 � Z2�-symmetry via the
invariances

�x1,y1,y2� � �− x1,− y1,y2�, �x1,y1,y2� � �x1,y1,− y2� .

Further note that since p�·� is even, if j+k=2�+1 for some
��N0, then C=0. Finally note that A ,B�R+, whereas the
sign of C is indeterminate.

C. Real-valued solutions

Suppose that y2=0. Upon setting

x1 ª � cos 	, y1 ª � sin 	 , �4.7�

Eq. �4.5� becomes

0 = cos 	�� + A�2 cos2 	 + 3B�2 sin2 	�

+ C sin 	�2 + cos 2	��2,

�4.8�
0 = sin 	�� + A�2 sin2 	 + 3B�2 cos2 	�

+ C cos 	�2 − cos 2	��2.

In turn, upon using the appropriate trigonometric identities
Eq. �4.8� can be rewritten as

0 = cos 2	�� + �A + C sin 2	��2� ,

�4.9�
0 = � + 1

2 �A�2 − sin2 2	� + 3B sin2 2	 + 2C sin 2	��2.

First suppose that cos 2	=0 in Eq. �4.9�. One then has that

�2 = −
2�

A + 3B � 4C
,

which from Eq. �4.7� yields the solutions
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x1
2 = y1

2 = −
�

A + 3B � 4C
. �4.10�

Now suppose that cos 2	�0. One then has that

�2 sin 2	��A − 3B�sin 2	 − 2C� = 0.

If sin 2	=0, then an examination of Eq. �4.8� shows that one
gets a valid solution if and only if C=0. Otherwise, one
necessarily has that

sin 2	 =
2C

A − 3B
, �2 = −

�

A + C sin 2	
. �4.11�

Note that if C=0, then Eq. �4.11� reduces to

�x1
2,y1

2� = 
−
�

A
,0�, �x1

2,y1
2� = 
0,−

�

A
� �C = 0� . �4.12�

D. Complex-valued solutions

Now suppose that y2�0. Upon setting

y1 ª � cos 	, y2 ª � sin 	 , �4.13�

Eq. �4.5� becomes

0 = x1�� + Ax1
2 + B�2 + cos 2	��2� + C� cos 	�3x1

2 + �2� ,

0 = � cos 	�� + A�2 + 3Bx1
2� + Cx1�x1

2 + �2 + cos 2	��2� ,

�4.14�

0 = � + A�2 + Bx1
2 + 2Cx1� cos 	 .

Upon substituting the last equation in Eq. �4.14� into the
second equation and simplifying, one sees that

0 = x1�� + Ax1
2 + B�2 + cos 2	��2� + C� cos 	�3x1

2 + �2� ,

0 = x1�2Bx1� cos 	 + C�x1
2 + �2�� , �4.15�

0 = � + A�2 + Bx1
2 + 2Cx1� cos 	 .

Now assume that x1�0; otherwise, by the gauge invariance
one is back to looking for real-valued solutions. Upon sub-
stituting the second equation of Eq. �4.15� into the first equa-
tion and simplifying, one gets

0 = x1�� + Ax1
2 + B�2 + 2Cx1� cos 	� ,

0 = 2Bx1� cos 	 + C�x1
2 + �2� , �4.16�

0 = � + A�2 + Bx1
2 + 2Cx1� cos 	 .

From Eq. �4.16�, one now gets that

�A − B���2 − x1
2� = 0. �4.17�

Since the Hölder inequality implies that B�A, and since
generically the inequality is strict, one now sees that �2=x1

2.

Plugging this into the second equation of Eq. �4.16� and
simplifying yields

cos 	 = �
C

B
�x1 = � �� ,

�4.18�

�2 = −
�

A + B − 2�C cos 	�
.

Note that if C=0, then the solution becomes

�x1
2,y2

2,x1
2� = −

�

A + B
�1,0,1� �C = 0� . �4.19�

V. STABILITY: SMALL EIGENVALUES

The theory leading to the determination of the spectral
stability of the solutions found in Sec. IV will depend upon
the results presented in �Ref. 22, Sec. 5.1� and Refs. 24–27.
Upon taking real and imaginary parts via qªu+ iv, and lin-
earizing Eq. �2.3� about a complex-valued solution Q=U
+ iV, one has the eigenvalue problem

JLu = �u , �5.1�

where

J ª 
 0 1

− 1 0
�, L ª �L0 − ��1 − a
3U2 + V2 2UV

2UV U2 + 3V2 � ,

and

L0 ª −
1

2
��x

2 + �y
2� +

1

2
�x2 + y2� +

V0

�
	p
 x

��
� + p
 y

��
�� .

Consider the solutions described in Sec. IV. Since
U ,V=O����, one has that in Eq. �5.1�

L = �L0 − � j,k�1 + O��� .

Since by assumption dim�ker�L0−� j,k�1�=4, one has that for
Eq. �5.1� there will be four eigenvalues of O���. Two of
these eigenvalues will remain at the origin due to the sym-
metries present in Eq. �2.3�; in particular, the gauge symme-
try, which leads to the conservation of the number of par-
ticles N, where

N ª� �
R2

�q�x��2 dx .

Consequently, there will only be two nonzero eigenvalues of
O���. Unfortunately, the perturbation calculations presented
below will be insufficient to fully determine the spectral sta-
bility of the solutions, for it is possible that O�1� eigenvalues
of opposite sign collide, and hence create a so-called oscil-
latory instability associated with a complex eigenvalue. This
issue will be considered briefly in Sec. VI. The interested
reader should also consult Sec. 6 of Ref. 22 and the refer-
ences therein.

The determination of the O��� eigenvalues can be found
via a reduction to a finite-dimensional eigenvalue problem.
To see this, consider Eq. �5.1� written in the form

023101-6 Kapitula, Kevrekidis, and Frantzeskakis Chaos 18, 023101 �2008�

Downloaded 09 Apr 2008 to 64.106.76.212. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



J ª 
 0 1

− 1 0
�, L = A0 + �L�,

with

A0 ª �L0 − � j,k�1, L� ª 
L+ B
B L−

� . �5.2�

Here it is assumed that 0���1, and that the operators L�

and B are self-adjoint on a Hilbert space H with inner prod-
uct �· , · �. Furthermore, it will be assumed that the operators
satisfy the assumptions given in Sec. 2 of Ref. 24.

Assume that the orthonormal basis for ker�L0� is given
by

ker�A0� = Span�	1,	2� . �5.3�

As seen in Ref. 28, Sec. 4, upon writing

� = ��1 + O��2�, u = �
j=1

2

cj�	 j,0�T + �
j=1

2

c2+j�0,	 j�T + O��� ,

the determination of the O��� eigenvalues to Eq. �5.2�
is equivalent to the finite-dimensional eigenvalue
problem

JSx = �1x; J ª 
 0 1

− 1 0
�, S ª 
S+ S2

S2 S−
� , �5.4�

where

�S��ij = �	i,L�	 j�, �S2�ij = �	i,B	 j� . �5.5�

A. Reduced eigenvalue problem: real-valued
solutions

In this case one has B=0 with

L+ = − �p − 3aU2, L− = − �p − aU2, �5.6�

where U�−1/2=x1qj,k+y1qk,j is given in Sec. IV C. Following
the notation in Eq. �5.3�, write

	1 ª qj,k, 	2 ª qk,j . �5.7�

First consider the solution for which cos 2	=0; i.e., Eq.
�4.10�. In Eq. �5.4� one then has that S2=0, with

S− = a�2�B � C�
 1 �1

�1 1
� ,

S+ = − a�2
 A � C �3�B � C�
�3�B � C� A � C

� .

A routine calculation then shows that the nonzero O��� ei-
genvalue �=�1�+O��2� satisfies

�1
2 = 2�4�B � C��A − 3B � 2C� . �5.8�

Now consider the solution that satisfies Eq. �4.11�. In this
case one still has S2=0; however, the other two submatrices
now satisfy

S− =
1

2
a�2
�A − B��1 − cos 2	� − 2�B sin 2	 + C�

− 2�B sin 2	 + C� �A − B��1 + cos 2	�
� ,

and

S+ = −
1

2
a�2
A + 3B + 4C sin 2	 + 3�A − B�cos 2	 6�B sin 2	 + C�

6�B sin 2	 + C� A + 3B + 4C sin 2	 − 3�A − B�cos 2	
� .

Another routine calculation then shows that the nonzero
O��� eigenvalue satisfies

�1
2 = − �4 A − B

A − 3B
�A − 3B + 2C��A − 3B − 2C� . �5.9�

It is interesting to compare the results of Eqs. �5.8� and �5.9�.
In the case C=0, i.e., j+k is odd, there is a selection mecha-
nism defined by the quantity A−3B. If A−3B�0, then the
solution defined by Eq. �4.10� has a positive O��� real eigen-
value, whereas that defined by Eq. �4.11� has both O��� ei-
genvalues being purely imaginary. The situation is reversed
if A−3B�0. Thus, the underlying trap geometry selects the
stable and unstable configurations. See Fig. 4 for a plot of
A−3B against V0 for various values of �j ,k�. For C�0, the
selection mechanism is defined by considering the sign of the
quantity �A−3B�2−4C2.

Recall that

FIG. 4. �Color online� A plot of A−3B vs V0 for p�x�=cos 2x , �=0.3, and
�j ,k�� ��1,0� , �2,1� , �3,0��. Note that the trap geometry plays an important
role in the selection of the unstable configuration.
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N =� �
R2

�q�x��2dx .

Let N
/4 represent N for the solution given in Eq. �4.10�, and
let N0 represent the solution given in Eq. �4.11�. Upon using
the expansion in Eq. �4.4�, one sees that

N
/4 − N0 =
�A − 3B � 2C�2

A + 3B � 4C

1

A2 − 3AB + 2C2� + O��3/2� .

�5.10�

If j+k is odd, then Eq. �5.10� reduces to

N
/4 − N0 =
1

A�A + 3B�
�A − 3B�� + O��3/2� . �5.11�

From Eq. �5.11� and from the above analysis, one clearly
sees that the nonzero O��� eigenvalues are real-valued for
the solution with the higher value of N. If j+k is even, then
the analysis is inconclusive on this point. However, in the
case that �j ,k�= �2,0� one arrives at the same conclusion via
a numerical computation of the expression in Eq. �5.10�, as
well as the quantity �A−3B�2−4C2 �see Fig. 5�.

B. Reduced eigenvalue problem: complex-valued
solutions

Let us now consider the solution given in Sec. IV D.
Recalling Eq. �4.17�, without loss of generality let us set x1

=�. In this case one has with

L+ = − �p − a�3U2 + V2�, L− = − �p − a�U2 + 3V2� ,

�5.12�
B = − a2UV ,

where U�−1/2=��qj,k+cos 	qk,j� and V=� sin 	qk,j are given
in Sec. IV D. Upon setting

E ª

B2 − C2

B
,

and using Eq. �5.4� with Eq. �5.7�, one eventually sees that

S− = − 2a�2
 E CE/B
CE/B �AE − C2�/B � ,

S+ = − 2a�2
A − B + E − CE/B
− CE/B E + �A − B�C2/B2 � ,

and

S2 = 2�2 sin 	
0 E

E − �A − B�C/B � .

For C�0 the expression for the nonzero eigenvalue is too
complicated to write down. However, in the case that C=0
one readily sees that the nonzero O��� eigenvalue satisfies

�1
2 = − 4�4�A2 − B2� . �5.13�

Since B�A with the inequality being generically strict, one
then gets that no instabilities are generated by the O��� ei-
genvalues.

VI. STABILITY: O„1… EIGENVALUES

In Sec. V the O��� eigenvalues were determined. Herein
we will locate the potentially unstable O�1� eigenvalues that
arise from a Hamiltonian–Hopf bifurcation. This bifurcation
is possible from the linear limit only if for the unperturbed
problem there is the collision of eigenvalues of opposite
sign.

Recalling the discussion in Ref. 20, Sec. IV B �also see
Ref. 22, Sec. 6�, we assume that the wave is such that �
=� j,k+O��� with j�k. All eigenvalues �m,n�� j,k with m
� j and n�k �which implies �m,n�� j,k� will initially map to
the purely imaginary eigenvalues �i�� j,k−�m,n� with nega-
tive Krein signature, whereas those which satisfy m� j and
n�k will map to purely imaginary eigenvalues �i��m,n

−� j,k� with positive signature. In particular, the simple eigen-
values � j,j and �k,k will both map to the spectral point

�HH ª i�� j,x − �k,x� .

Thus, �HH is a semi-simple, purely imaginary eigenvalue
with at least multiplicity 2; furthermore, it is a nongeneric
collision of two eigenvalues with opposite Krein signature.
The bifurcation associated with �HH is discussed in Ref. 22.
Assuming that the multiplicity is exactly 2, the perturbed
eigenvalue is given by �=�HH+�1�+O��2�, where �1 is an
eigenvalue of the matrix iH /2�C2�2, where

H11 = − ��L+ + L−�qkk,qkk�, H22 = ��L+ + L−�qjj,qjj� ,

�6.1�
H12 = − ��L+ − L−�qjj,qkk� − i2�Bqjj,qkk�, H21 = − H12

�

�see Eq. �5.2��.
Set

�HH ª �H11 − H22�2 − 4�H12�2. �6.2�

If �HH�0, then �1� iR, so that no Hamiltonian–Hopf bifur-
cation occurs. On the other hand, if �HH�0, then Re �1

FIG. 5. �Color online� A plot of the quantities �A−3B�2−4C2 and A2

−3AB+2C2 for �j ,k�= �2,0� and �=0.3. Note that both quantities are posi-
tive. Since A2−3AB+2C2�0 one has N
/4−N0�0, while �A−3B�2−4C2

�0 implies that the solution defined by Eq. �4.10� has a real positive O���
eigenvalue, whereas the solution defined by Eq. �4.11� has purely imaginary
O��� eigenvalues.
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�0, and a Hamiltonian–Hopf bifurcation does indeed occur.
Consequently, the quantity �HH can be used to detect these
bifurcations. If the calculations support the conclusion that
there is a Hamiltonian–Hopf bifurcation, then one can con-
clude that the wave is unstable. However, if �HH�0, then
one cannot necessarily conclude that there are no other un-
stable eigenvalues. It may be possible that other eigenvalue
collisions have occurred which have not been taken into ac-
count by this analysis �see, e.g., Ref. 22, Sec. 6�.

A. Real-valued solutions

For the real-valued solutions one has B=0, and the op-
erators L� are given in Eq. �5.6�. Upon using Eq. �6.1� and
the formulation given in Eq. �4.7�, one eventually finds that

H11 = 2a�� + 2�2�gjjkkgkkkk + sin 2	qjkkk
2 �� ,

H22 = − 2a�� + 2�2�gjjkkgkkkk + sin 2	qjkkk
2 �� , �6.3�

H12 = 2a�2�B sin 2	 + C� .

Consider the solution for which cos 2	=0; i.e., Eq. �4.10�.
After some algebraic manipulation, one sees that

H11 − H22 = 4a�2�A + 3B + 4C sin 2	 − gjjkk�gjjjj + gkkkk�

− sin 2	�gjkkk
2 + gjjjk

2 �� ,

�6.4�
H12 = 2a�2�B sin 2	 + C� .

Note that in Eq. �6.4�, if C=0, i.e., j+k is odd, then

H11 − H22 = 4a�2�A + 3B − gjjkk�gjjjj + gkkkk�� ,

H12 = 2a�2B sin 2	 ,

so that

�HH
r

ª

�HH

16a2�4 = �A + 3B − gjjkk�gjjjj + gkkkk��2 − B2. �6.5�

A plot of this quantity is given in Fig. 6. Note that for the
values chosen, �HH

r �0, so that no Hamiltonian–Hopf bifur-
cation occurs.

Now consider the solution that satisfies Eq. �4.11�. After
some algebraic manipulation, one sees that

H11 − H22 = 4a�2�A + C sin 2	 − gjjkk�gjjjj + gkkkk�

− sin 2	�gjkkk
2 + gjjjk

2 �� ,

�6.6�
H12 = 2a�2�B sin 2	 + C� .

Note in Eq. �6.6�, that if C=0, then H12=0. In this case it is
then straightforward to show that �HH�0, so that no
Hamiltonian–Hopf bifurcation occurs.

B. Complex-valued solutions

For the complex-valued solutions, the operators L� and
B are given in Eq. �5.12�. Upon using the formulation in Sec.
IV D, and setting without loss of generality x1=�, one even-
tually sees that

H11 − H22 = 4a�2�A + B − 2C cos 	 − 2gjjkk�gjjjj + gkkkk�

− 2 cos 	�gjkkk
2 + gjjjk

2 �� ,

�6.7�
H12 = 4a�2ei	�B + C cos 	� .

The quantity �HH can now be computed. If C=0, i.e., j+k is
odd, then

�HH
v

ª

�HH

16a2�4 = �A + B − 2gjjkk�gjjjj + gkkkk��2 − 4B2. �6.8�

A plot of this quantity is given in Fig. 6. Note that for each of
the solutions that a Hamiltonian–Hopf bifurcation is possible
if V0 is in a band henceforth denoted as that HH vortex
resonance band. Note that the geometry of the trap plays an
important role in the location of such an instability band.

VII. CONCLUSIONS

In the present work we have developed a systematic
framework for understanding the solutions emerging in a
two-dimensional nonlinear Schrödinger equation with para-
bolic and periodic potentials. This study was motivated by its
physical relevance in the setting of disk-shaped Bose–
Einstein condensates under the combined effect of magnetic
and optical trapping. We have concluded that two distinct
real states and one distinct complex state can arise from each
of the eigenvalues of the linear problem in this setting.
Among the real states, the one with the larger norm for a
fixed value of the chemical potential will generically possess
a real eigenvalue pair in its linearization and hence will be
exponentially unstable. The other real state will possess
small imaginary eigenvalues with negative Krein signature,
which may become complex upon collision with other eigen-
values of the linear spectrum. The complex solutions repre-
sent either single vortex or multivortex nonlinear bound
states. These also possess negative Krein sign eigenvalues,
which may or may not become complex based on conditions
that depend predominantly on the nature of the geometry of
the underlying linear potential.

A natural extension of the present results that appears to
be tractable based on the formulation presented herein con-
sists of the fully three-dimensional problem. To the best of
our knowledge, this has not been considered in the combined
presence of both parabolic and periodic potentials, although

FIG. 6. �Color online� A plot of �HH
r vs V0 �left panel, see Eq. �6.5�� and

�HH
v vs V0 �right panel, see Eq. �6.8�� for p�x�=cos 2x , �=0.3, and �j ,k�

� ��1,0� , �2,1� , �3,0��.
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isolated results do exist, e.g., about radially symmetric states
such as the ones of Refs. 16 and 17 as well as vortex rings
and related states discussed in the very recent review of
Ref. 29 �see also references therein�.
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