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Abstract. The linear stability analysis of pulses is considered in this review article. It is shown herein
the general manner in which the Evans function, an analytic tool whose zeros correspond to eigenvalues,
is constructed. Furthermore, the construction is done explicitly for the linearization of the nonlinear
Schrödinger equation about the 1-soliton solution. In another explicit calculation, it is shown how the
Evans function can be used to track the nonzero eigenvalues arising from a dissipative perturbation of
the nonlinear Schrödinger equation which arises in the context of pulse propagation in nonlinear optical
fibers.
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1. Introduction

One of the more exciting areas in applied mathematics is the study of the dynamics associated with the
propagation of information. Phenomena of interest include the transmission of impulses in nerve fibers, the
transmission of light down an optical fiber, and phase transitions in materials. The nature of the system
dictates that the relevant and important effects occur along one axial direction. The models formulated
in these areas exhibit many other effects, but it is these nonlinear waves that are the raison-d’être of the
models. The demands on the mathematician for techniques to analyze these models may best be served by
developing methods tailored to determining the local behavior of solutions near these structures. The most
basic question along these lines is the stability of the waves relative to perturbations in the initial data.
Only waves that are stable can be reasonably expected to be physically realizable. By the same token, the
presence of any instability and understanding its source can be crucial if the goal is to control the wave to
a stable configuration.

There have been some striking advances over recent years in the development of stability techniques for
nonlinear waves such as fronts, pulses and wave-trains. A motivating force behind these stability methods
is the desire for “rules-of-thumb” or “principles” that can be adopted by physical scientists. An example
of such a rule would be the result that a travelling wave solution of a (scalar) reaction-diffusion equation
is stable exactly when it is monotone (see Fife and McLeod [16]). In other words: fronts are stable, but
pulses are not. This is a simple consequence of classical Sturm-Liouville theory applied to the eigenvalue
equations of the equations linearized at the wave, and yields a relationship between the structure of the
wave itself and its stability properties. Armed with this information, one has a “rule-of-thumb” for how to
discriminate between stable and unstable waves in this system. Another example is the Vakhitov-Kolokov
criterion, which is applicable to systems such as the nonlinear Schrödinger equation. Letting P (ω) represent
the power of the underlying wave, the wave is stable if dP/dω > 0, and unstable otherwise. That such rules
should exist in more general systems and for nonlinear waves with more complicated structure has driven
much of the research in this area.

The key information for stability is contained in the linearization of the PDE about the wave. In
many cases, location of the spectrum suffices to determine the stability, i.e., spectrum in the left half plane
corresponds to stable directions and that in the right half plane corresponds to unstable directions. In
dissipative systems this basic linear information is definitive. However, there are a number of interesting
problems in which more subtle information about the linearized system is sought; these tend to occur in
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conservative or near-conservative systems for which there is considerable spectrum either on or touching the
imaginary axis.

One tool in particular has come to stand out as central in stability investigations of nonlinear waves. The
Evans function is an analytic function whose zeroes give the eigenvalues of the linearized operator, with the
order of the zero and the multiplicity of the eigenvalue matching. The Evans function is a generalization
to systems of PDEs of the transmission coefficient from quantum mechanics and was first formulated by
Evans for a specific class of systems, see [12–15]. Evans was interested in the stability of nerve impulses
and formulated a category of equations that he named “nerve impulse equations”. This class of equations
had a special property that made the formulation of this function straightforward. In his paper, he used
the notation D(λ) to connote “determinant”, as it played the same role as the determinant of an eigenvalue
matrix in finite-dimensional problems. Jones [18] used Evans’ idea to solve the problem for the stability of
the travelling pulse (nerve impulse) of the FitzHugh-Nagumo system. It was named by Jones as the Evans
function and the notation E(λ) is now in common usage. The first general definition of the Evans function
was given by Alexander et al. [3]. Although based on Evans’ idea, these authors put it on a new conceptual
plane in order to give a clear, general definition.

We will now focus on a representative problem, which motivates much of the discussion in this review
article. Pulse propagation in a standard single-mode optical fiber is modelled by an equation of the form

iqt +
1
2
qxx + |q|2q = εR(x, t, q, q∗). (1.1)

Here q represents the slowly-varying envelope of the rapidly varying wave, the term |q|2q represents the
nonlinear response of the fiber, and the perturbation term R incorporates additional (nonlinear) effects such
as Raman scattering, phase amplification, spectral filtering, and impurities in the fiber. A pulse solution
corresponds to a “bit” of information propagating down the optical fiber, and is realized as a homoclinic orbit
for the underlying travelling wave ODE. Equation (1.1), in addition to being a physically realistic model,
is amenable to an extensive and thorough analysis; furthermore, it incorporates many of the mathematical
issues and difficulties present in more complex perturbed Hamiltonian systems.

The structure and stability of the pulse is well-known for the unperturbed problem, as equation (1.1) is
an integrable system (see Section 4). The pulse can be well-described by four parameters: amplitude, wave
speed, position, and phase. From this it can be seen that the origin of the complex plane is an eigenvalue
with geometric multiplicity (g.m.) two and algebraic multiplicity (a.m.) four. The fact that a.m.6=g.m. is a
reflection of the fact that the system is Hamiltonian. Furthermore, the only other spectrum is essential, and
it resides completely on the imaginary axis.

There are several fundamental stability issues that arise for the perturbed problem, assuming that some
subset of the family of pulse solutions is chosen by the perturbation. The first is the fate of the spectrum of
the origin. If the perturbation is dissipative but breaks neither of the symmetries, then the small bifurcating
eigenvalues will typically be of O(ε). How does one systematically and generally capture the location of these
small eigenvalues? This problem can be thought of as lying in the realm of classical bifurcation theory, and
is addressed in Section 5.

A more subtle effect to be understood is the influence of the perturbation on the essential spectrum. The
location of the essential spectrum after the perturbation is well-understood; however, what is less understood
is determining the location of point eigenvalues in or near near the essential spectrum which popped out after
the perturbation. In the physics literature these eigenvalues are often called internal modes, as for perturbed
Hamiltonian systems they often reside on the imaginary axis. An understanding of this phenomena is
important, as any or all of these eigenvalues can lead to an instability. This creation of internal modes has
been termed an Edge Bifurcation [24]. This naming is due to the fact that for equation (1.1) the bifurcation
occurs only at the edge of the essential spectrum. The questions to be answered in this problem are: (a)
from which points in the essential spectrum can an edge bifurcation occur? (b) how many eigenvalues will
arise from a particular bifurcation? This problem can be thought of as lying outside classical bifurcation
theory, primarily because it is not clear as to the location of the bifurcation point in the spectral plane. This
issue is briefly addressed in Section 4.1, and much more extensively in [26].

This article is outlined in the following way. In Section 2 we show how to construct the Evans function
for a simple example. In Section 3 we give several equivalent constructions of the Evans function, and
discuss its properties. In Section 4 we use the Evans function to compute the spectrum for equation (1.1)



3 T. Kapitula

in the unperturbed case. Finally, in Section 5 we compute the spectrum for equation (1.1) for a particular
dissipative perturbation.

Acknowledgments. This work was partially supported by the National Science Foundation under grant
DMS-0304982, and by the Army Research Office under grant ARO 45428-PH-HSI.

2. Basic example

Consider the scalar reaction-diffusion equation

ut = uxx − u + 2u3, (2.1)

where (x, t) ∈ R × R+. It is easy to check that equation (2.1) has a pulse solution which is given by
u(x) = U(x), where U(x) = sech(x). Linearizing equation (2.1) yields the linear eigenvalue problem

p′′ − (1− 6U2(x))p = λp, ′ =
d
dx

. (2.2)

Since equation (2.1) is translation invariant, λ = 0 is an eigenvalue with associated eigenfunction U ′(x).
Since U(x) is a nonmonotone solution, as an easy application of Sturm-Liouville theory one can then deduce
that there is one positive eigenvalue, and hence the wave is unstable. The purpose of this section is to
show how the Evans function can be used to deduce the same conclusion. The idea is that by examining a
relatively simple problem, the reader will then have a “blueprint” for the theory and ideas that lie ahead.

Upon setting Y = (p, q)T, write the eigenvalue problem equation (2.2) as the first-order system

Y′ = (M(λ) + R(x))Y, (2.3)

where

M(λ) =
(

0 1
1 + λ 0

)
, R(x) =

(
0 0

−6U2(x) 0

)
.

It is important to note that lim|x|→+∞ |R(x)| = 0, and that the decay is exponentially fast. For the rest of
this discussion it will be assumed that Re λ > −1. The eigenvalues of M(λ) are given by

µ±(λ) = ±
√

1 + λ,

and the associated eigenvectors are
η±(λ) = (1, µ±(λ))T .

One can construct solutions Y±(λ, x) to equation (2.3) which satisfy

lim
x→±∞

Y±(λ, x)e−µ∓(λ)x = η∓(λ);

note that the construction implies that limx→±∞ |Y±(λ, x)| = 0. The Evans function is given by

E(λ) = det(Y−, Y+)(λ, x), (2.4)

and by Abel’s formula it is independent of x.
The importance in the manner in which the Evans function is constructed is seen in the following argu-

ment. Suppose that E(λ0) = 0 for some λ0 with Re λ0 > −1. It is then clear that Y−(λ0, x) = αY+(λ0, x)
for some α ∈ C. Hence, there is a localized solution to equation (2.2) when λ = λ0, so that λ0 is an
eigenvalue. Similarly, if λ0 is an eigenvalue with Re λ0 > −1, then it is not difficult to convince oneself that
E(λ0) = 0. The following proposition has then been almost proved.
Proposition 2.1. Set Ω = {λ ∈ C : Re λ > −1}. The Evans function is analytic on Ω. Furthermore,
E(λ) = 0 if an only if λ is an eigenvalue, and the order of the zero is equal to the algebraic multiplicity of
the eigenvalue.
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It is of interest to relate the Evans function to the transmission coefficient associated with the Inverse
Scattering Transform [1, 2]. For Re λ > −1 and x � 1 the solution Y−(λ, x) has the asymptotics

Y−(λ, x) = a(λ)η+(λ)eµ+(λ)x + b(λ)η−(λ)eµ−(λ)x + O(x−1). (2.5)

Here a(λ) is the transmission coefficient, and a(λ0) = 0 if and only if λ0 is an eigenvalue. Using the definition
of the Evans function given in equation (2.4) and letting x → +∞ yields

a(λ) = − E(λ)
2
√

1 + λ
; (2.6)

hence, for Re λ > −1 one has that E(λ) = 0 if and only if a(λ) = 0.
We will now use the Evans function to show that the wave is unstable. For λ ∈ Ω with |λ| � 1, the

system is essentially autonomous, i.e., the influence of the matrix R(x) on the solutions to equation (2.3)
becomes negligible (see [3] for the details). This is equivalent to the transmission coefficient being unity for
large λ. As a consequence, it is easy to see from equation (2.6) that for λ ∈ Ω,

lim
|λ|→+∞

E(λ)√
1 + λ

= −2. (2.7)

Since λ = 0 is an eigenvalue, one has that E(0) = 0. As a consequence of equation (2.7) it is seen that
the Evans function is negative for large real positive λ; therefore, the wave will necessarily be unstable if
E′(0) > 0. We now proceed to make that calculation.

By construction one has that Y−(0, x) = Y+(0, x) = (U ′(x), U ′′(x))T. Taking a derivative with respect
to λ yields

E′(0) = det(∂λ(Y− −Y+), Y+)(0, x). (2.8)

Now, upon observation of equation (2.3) it is easy to see that at λ = 0,

(∂λY±)′ = (M(0) + R(x))∂λY± + M ′(0)Y±. (2.9)

Note that

M ′(0)Y± =
(

0
U ′(x)

)
.

Upon solving equation (2.9) via variation of parameters, one finds that

∂λ(Y− −Y+)(0, x) =
(
−
∫ +∞

−∞
(U ′(x))2 dx

)
u2(x) + C1u1(x) (2.10)

for some constant C1. Here u1(x) = Y−(0, x), and u2(x) is another solution to equation (2.3) at λ = 0 such
that det(u1, u2)(x) = 1. Substitution of the result of equation (2.10) into the expression of equation (2.8)
then yields that

E′(0) =
(
−
∫ +∞

−∞
(U ′(x))2 dx

)
det(u2, u1)(x)

=
∫ +∞

−∞
(U ′(x))2 dx.

(2.11)

Thus, one has the existence of an odd number of real positive zeros. As previously mentioned, there is
exactly one.

While we will not discuss the issue in any more detail here, this idea of proving the instability of a wave
has proven to be very fruitful. The interested reader should consult, for example, [4–6, 9, 10, 17, 19] and
the references therein.
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2.1. Alternative definition

Recall the definition of the Evans function given in equation (2.4). There is an equivalent definition which
was first used by Evans [12, 13, 14, 15], and which was later used by Jones [18] to determine the stability of
the fast travelling pulse to the Fitzhugh-Nagumo equation (also see [33, 34]). Consider the adjoint equation
to equation (2.3) given by

Z′ = −(M(λ)∗ + R(x))TZ. (2.12)

As in the construction of the solutions Y±(λ, x) to equation (2.3), one can construct a solution Z+(λ, x),
analytic in λ for fixed x, to equation (2.12) which satisfies

lim
x→+∞

Z+(λ, x)e−µ−(λ)∗x = (µ−(λ)∗, 1)T.

The Evans function can be written as

E(λ) = 〈Y−(λ, x),Z+(λ, x)〉, (2.13)

where 〈·, ·〉 represents the standard inner product on C2. A generalization of this formulation will be given
in the subsequent section.

3. Construction of the Evans function

Now that we have an idea as to how the Evans function is constructed for scalar reaction-diffusion
equations, let us consider more general PDEs of the class

ut = Buxx + f(u, ux),

where it is assumed that the initial value problem is well-posed. Upon setting z = x− ct, the PDE becomes

ut = Buzz + cuz + f(u, uz).

For the PDE at hand it will be assumed that there is a travelling pulse U(z) and a constant state U∗ such
that |U(z)−U∗| → 0 exponentially fast as |z| → ∞. If one desires, this restriction can be relaxed to consider
travelling fronts which connect a constant state U− to a state U+; however, upon doing so one only increases
the notational complexity without increasing the generality of all that follows (see [3] for further details).

After linearizing the PDE about the travelling wave, the eigenvalue problem can be rewritten as the
first-order system

Y′ = (M(λ) + R(z))Y, ′ = d/dz, (3.1)

where λ ∈ C is the eigenvalue parameter and the n × n matrix |R(z)| → 0 exponentially fast as |z| → ∞.
If λ is not in the continuous spectrum, then the matrix M(λ) has no purely imaginary eigenvalues. Denote
the region of the complex plane for which this property is true by Ω, and assume that {λ : Re λ > 0} ⊂ Ω.
This assumption implies that any temporal exponential instability will be due solely to the presence of point
spectrum. Assume that for λ ∈ Ω that M(λ) has m eigenvalues with positive real part, say µ+

i (λ) for
i = 1, . . . ,m, and n−m eigenvalues with negative real part, say µ−i (λ) for i = 1, . . . , n−m. The eigenvectors
associated with µ±i (λ) will be denoted by η±i (λ).

We will now construct the Evans function using various formulations. The central idea in all cases will
be that we wish to create an analytic function which vanishes precisely when there is a localized solution to
the eigenvalue problem. This requires that we construct solutions to equation (3.1) which decay as z → ±∞.

3.1. Construction with simple eigenvalues

Let us first assume that the eigenvalues µ±i (λ) are simple. The eigenvectors can then be chosen to be
analytic (Kato [27]), and solutions Y±

i (λ, z) to equation (3.1), analytic in λ for fixed z, can be constructed
so that

lim
z→−∞

Y−
i (λ, z)e−µ+

i (λ)z = η+
i (λ), i = 1, . . . ,m, (3.2)
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and
lim

z→+∞
Y+

i (λ, z)e−µ−i (λ)z = η−i (λ), i = 1, . . . , n−m (3.3)

([3]). The Evans function, E(λ), is given by the scaled Wronskian of these solutions, i.e.,

E(λ) = m(λ, z) det(Y−
1 , · · · ,Y−

m,Y+
1 , · · · ,Y+

n−m)(λ, z), (3.4)

where

m(λ, z) = exp
(
−
∫ x

0

trace(M(λ) + R(s)) ds

)
.

As a consequence of Abel’s formula, the Evans function is independent of z. In the above context, the
following theorem was proved by Alexander et al. [3].

Theorem 3.1. The Evans function is analytic on Ω. Furthermore, E(λ) = 0 if and only if λ is an eigenvalue,
and the order of the zero is equal to the algebraic multiplicity of the eigenvalue.

3.2. Construction via inner products

Under a slight relaxation of the above criteria, i.e., if one assumes only that the eigenvalues µ−i (λ) are
simple, then there is an equivalent formulation of the Evans function, which is due to Swinton [39]. The
equivalence was shown by Bridges and Derks [8]; furthermore, this new formulation has been exploited
by Bridges [7], Bridges and Derks [9, 10] for a series of problems in which the eigenvalue problem has a
Hamiltonian formulation. Consider the adjoint system associated with equation (3.1),

Z′ = −(M(λ)∗ + R(z))TZ. (3.5)

The eigenvalues of (−M(λ)∗)T are given by −(µ±i (λ))∗; let the associated eigenvectors be given by ζ±i (λ).
As above, one can construct solutions Z+

i (λ, z) to equation (3.5) which satisfy

lim
z→+∞

Z+
i (λ, z)eµ+

i (λ)∗z = ζ+
i (λ), i = 1, . . . ,m. (3.6)

The Evans matrix is the generalization of the formulation of equation (2.13), and is given by

D(λ) =

 〈Y−
1 ,Z+

1 〉 · · · 〈Y−
1 ,Z+

m〉
...

. . .
...

〈Y−
m,Z+

1 〉 · · · 〈Y−
m,Z+

m〉

 (λ, z), λ ∈ Ω, (3.7)

where now 〈·, ·〉 represents the inner product on Cn.

Theorem 3.2. Set D(λ) = det(D(λ)). There exists an analytic function C(λ) 6= 0 such that E(λ) =
C(λ)D(λ).

Remark 3.3. Without loss of generality it can henceforth be assumed that C(λ) = 1.

3.3. Construction via exponential dichotomies

Unfortunately, it turns out that in many problems of interest the assumption that the eigenvalues of
M(λ) are simple for λ ∈ Ω does not hold. As a consequence, in order to preserve the analyticity of the Evans
function, solutions to equation (3.1) must be constructed in a different manner [38]. Denote by Φ(λ; z, y)
the evolution associated with equation (3.1). As discussed in [22, 38] (also see [11, 36] and the references
therein) one can construct projection operators, Ps(λ) and Pu(λ), analytic in λ ∈ Ω, such that for some
κs < 0 < κu and K ≥ 1,

|Φ(λ; z, 0)Pu(λ)| ≤ Keκuz, z ≤ 0; |Φ(λ; z, 0)Ps(λ)| ≤ Keκsz, z ≥ 0.
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Furthermore, these operators have the property that

dim R(Pu(λ)) = m, dim R(Ps(λ)) = n−m;

thus, they are maximal in the sense that they capture all of the initial data leading to exponentially decaying
solutions as z → ±∞. Given a Y0 ∈ Cn, set Y±(λ, z) to be

Y−(λ, z) = Φ(λ; z, 0)Pu(λ)Y0, Y+(λ, z) = Φ(λ; z, 0)Ps(λ)Y0.

Note that if the eigenvalues of M(λ) are simple, then

Y−(λ, z) ∈ Span{Y−
1 (λ, z), . . . ,Y−

m(λ, z)},

and
Y+(λ, z) ∈ Span{Y+

1 (λ, z), . . . ,Y+
n−m(λ, z)}.

It is clear that an initial condition will lead to a bounded solution if and only if Y−(λ, 0)∩Y+(λ, 0) 6= {0}.
Since the projections are analytic, as a consequence of [27, Chapter II.4.2] one can choose analytic

bases {b1(λ), . . . , bm(λ)} and {bm+1(λ), . . . , bn(λ)} of R(Pu(λ)) and R(Ps(λ)), respectively. If one defines
the analytic matrix B(λ) ∈ Cn×n via

B(λ) = (b1(λ) · · · bm(λ) bm+1(λ) · · · bn(λ)),

then by construction it is clear that for λ ∈ Ω a uniformly bounded solution to equation (3.1) will exist if
and only if dim N(B(λ)) ≥ 1. The Evans function can then be defined to be

E(λ) = det(B(λ)). (3.8)

4. The linearization of the nonlinear Schrödinger equation

Let us now apply the results of the previous section to a well-understood example. The nonlinear
Schrödinger hierarchy is the class of nonlinear integrable Hamiltonian systems given by

ut = K(u), (4.1)

where u = (r, q) ∈ L2(R, C2),
K(u) = −2σ3Ω(LA(u))u,

σ3 is the Pauli spin matrix

σ3 =
(

1 0
0 −1

)
,

LA is the integro-differential operator

LA(u)v = − i
2
∂xv + iu

∫ x

−∞
[qv1 − rv2] dy,

and Ω(·) = iP (·), where P (·) is a polynomial with real-valued coefficients. The notation v = (v1, v2) is being
used. If P (k) = 1/2 + k2, then the evolution equation (4.1) is

qt = i(
1
2
qxx − q − q2r)

rt = −i(
1
2
rxx − r − qr2),

(4.2)

which is the focusing nonlinear Schrödinger equation (NLS) upon setting r = −q∗. The interested reader is
referred to [1, 2] for further details.
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Assume that u0 is a stationary 1-soliton solution of equation (4.1). The interest is in the spectrum of
the linearization K′(u0) about u0 and, in particular, in eigenvalues λ for which

K′(u0)u = λu

has a non-zero solution u in L2(R, C2). Note that the eigenvalue problem for the focusing NLS equation (4.2)
reads

λq = i(
1
2
qxx − q − 2q0r0q − q2

0r)

λr = −i(
1
2
rxx − r − 2q0r0r − r2

0q)
(4.3)

with u0 = (q0, r0). This problem can be solved if we can construct, and compute, the Evans function
associated with the operator K′(u0). The essential spectrum of K′(u0) is given by

σe(K′(u0)) := {λ ∈ C; λ = ±2Ω(k), k ∈ R} ⊂ iR.

Also, it was shown in [25] that λ = 0 is the only eigenvalue of K′(u0). These eigenvalues at λ = 0 are due
to the invariances associated with equation (4.1). We will recover this result later in this section for the
polynomial dispersion relation P that gives the nonlinear Schrödinger equation.

The key to calculating the Evans function is to exploit Inverse Scattering Theory, which is possible since
equation (4.1) is integrable. The underlying linear scattering problem associated with the nonlinear operator
K(u) is the Zakharov-Shabat problem [2]

vx =
(

−ik q0(x)
−q∗0(x) ik

)
v

where k ∈ C is a complex parameter. The Jost functions are solutions to the Zakharov-Shabat eigenvalue
problem that satisfy certain boundary conditions at x = ±∞. Appropriate quadratic combinations of the
Jost functions define the adjoint squared eigenfunctions, which we denote1 by ΨA(k, x), defined for Im k ≥ 0,
and Ψ̄A(k, x), defined for Im k ≤ 0. The adjoint squared eigenfunctions are crucial ingredients when applying
Soliton Perturbation Theory [29, 30]. As we shall see below, they can also be used to explicitly calculate the
Evans function associated with K′(u0). For k ∈ R, the adjoint squared eigenfunctions satisfy the identities

[LA(u)− k]ΨA(k, x) = [LA(u)− k]Ψ̄A(k, x) = 0.

Furthermore, they have the property that, for fixed x, ΨA(k, x) is analytic in k for Im k > 0, while Ψ̄A(k, x)
is analytic in k for Im k < 0. In addition, they have the asymptotics

lim
x→−∞

ΨA(k, x)e2ikx =
(

0
−1

)
, lim

x→∞
ΨA(k, x)e2ikx = a(k)2

(
0

−1

)
(4.4)

and

lim
x→−∞

Ψ̄A(k, x)e−2ikx =
(

1
0

)
, lim

x→∞
Ψ̄A(k, x)e−2ikx = ā(k)2

(
1
0

)
(4.5)

The functions a(k) and ā(k) are the transmission coefficients for the Zakharov-Shabat eigenvalue problem,
and for the 1-soliton of the NLS equation (4.2) are given by

a(k) =
√

2 k − i√
2 k + i

, ā(k) =
√

2 k + i√
2 k − i

(4.6)

[28, 30]. Furthermore, it is known, see [25] for references, that the adjoint squared eigenfunctions and the
transmission coefficients can be extended analytically across the line Im k = 0.

1Notation: We denote by q∗ the complex conjugate of a complex number q. Thus, q̄ does not refer to the complex conjugate.
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Lemma 4.1 ([25]). The adjoint squared eigenfunctions satisfy

[K′(u0)− 2Ω(k)]σ3ΨA(k, x) = 0, Im k ≥ 0

[K′(u0) + 2Ω(k̄)]σ3Ψ̄A(k̄, x) = 0, Im k̄ ≤ 0.

Remark 4.2. The interested reader should also consult [40, 41].
Thus, upon applying the matrix σ3 to the squared eigenfunctions, one recovers eigenfunctions for the

linearized problem. We are now in the position to calculate the Evans function. While it is possible to
make this calculation for the full hierarchy (see [25] for the details), for the sake of clarity only the specific
dispersion relation

Ω(`) = i
(

1
2

+ `2
)

(4.7)

of the nonlinear Schrödinger equation will be considered. For this case explicit expressions are known [30] for
the adjoint squared eigenfunctions given in Lemma 4.1; however, as it will be seen below, these expressions
are not necessary in order to make a calculation.

Consider equation (4.7) and note that the associated continuous spectrum consists of the elements λ =
±i(1 + 2`2) where ` varies in R, i.e., it is the imaginary axis minus the interval (−i, i). Since we wish to
exploit Lemma 4.1, we choose for each λ /∈ σe(K′(u0)) numbers k and k̄ such that

λ = 2Ω(k) = i(1 + 2k2), λ = −2Ω(k̄) = −i(1 + 2k̄2),

i.e.,

k(λ) =
1√
2
ei3π/4

√
λ− i, arg(λ− i) ∈ (−3π/2, π/2], (4.8)

and
k̄(λ) =

1√
2
e−i3π/4

√
λ + i, arg(λ− i) ∈ (−π/2, 3π/2], (4.9)

The branch cuts have been chosen so that Im k > 0 and Im k̄ < 0, and that k and k̄ are analytic for
λ /∈ σe(K′(u0)). By Lemma 4.1 it is seen that σ3ΨA(k, x) and σ3Ψ̄A(k̄, x) are two solutions to the eigenvalue
problem equation (4.3). Both of these solutions decay exponentially fast to zero as x → −∞. Furthermore,
as a consequence of equation (4.4) and equation (4.5), we know their asymptotics as x →∞. From now on,
we regard k and k̄ as functions of λ defined via equation (4.8) and equation (4.9).

Next, rewrite the eigenvalue problem equation (4.3) as an ODE

dY
dx

= [M(λ) + R(x)]Y, (4.10)

where Y = (q, r, qx, rx)T ∈ C4, and

M(λ) =


0 0 1 0
0 0 0 1

−2i(λ + i) 0 0 0
0 2i(λ− i) 0 0

 , R(x) = 2


0 0 0 0
0 0 0 0

2q0r0 q2
0 0 0

r2
0 2q0r0 0 0

 .

Note that |R(x)| → 0 as |x| → ∞. The eigenvalues and eigenvectors of M(λ) are analytic for λ /∈ σe(K′(u0)).
We can define two solutions2

Yu
1(λ, x) =

(
1
∂x

)
σ3ΨA(k(λ), x), Yu

2(λ, x) =
(

1
∂x

)
σ3Ψ̄A(k̄(λ), x)

that decay exponentially to zero as x → −∞. Analogously, there are two solutions to the adjoint equation
associated with equation (4.10) which decay exponentially as x → +∞ for λ /∈ σe(K′(u0)):

lim
x→+∞

Zs
1(λ, x)e2ik(λ)∗x = (0, 2ik(λ)∗, 0, 1)T

lim
x→+∞

Zs
2(λ, x)e−2ik̄(λ)∗x = (−2ik̄(λ)∗, 0, 1, 0)T.

(4.11)

2Note that the subscripts of Yu
j do not denote the components of the vectors.
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Following the formulation of Section 3.2 the Evans matrix is given by

D(λ) =
(
〈Yu

1 ,Zs
1〉 〈Yu

1 ,Zs
2〉

〈Yu
2 ,Zs

1〉 〈Yu
2 ,Zs

2〉

)
(λ, x), λ /∈ σe(K′(u0)), (4.12)

and the Evans function is given by E(λ) = det(D(λ)). Now we evaluate the Evans function. As a consequence
of equation (4.4) and equation (4.5), we have the asymptotics

lim
x→+∞

Yu
1(λ, x)e2ik(λ)x = a(k(λ))2 (0, 1, 0,−2ik(λ))T

lim
x→+∞

Yu
2(λ, x)e−2ik̄(λ)x = ā(k̄(λ))2 (1, 0, 2ik̄(λ), 0)T,

(4.13)

where

a(k(λ)) =
eiπ/4

√
λ− i− 1

eiπ/4
√

λ− i + 1
, ā(k̄(λ)) =

e−iπ/4
√

λ + i− 1
e−iπ/4

√
λ + i + 1

.

Taking the limit x → ∞ in equation (4.12) and using the asymptotics given in equation (4.11) and equa-
tion (4.13) yields

E(λ) = 8a(k(λ))2ā(k̄(λ))2
√

λ− i
√

λ + i. (4.14)

As a final remark, note that a(k(0)) = ā(k̄(0)) = 0, and that these zeros are simple.

4.1. Edge bifurcations

For the rest of the discussion in this section, assume that Im λ ≥ 0. An examination of the Evans function
reveals that λ = 0 is a zero of order four, and that the only other zeros are at the branch points λ = ±i. The
eigenvalues at the origin are due to the symmetries associated with the NLS. Now consider λ = i. It is clear
that σ3ΨA(k(i), x) is uniformly bounded but nondecaying for all x, while σ3Ψ̄A(k̄(i), x) decays exponentially
as x → −∞ and grows exponentially fast as x → +∞. Hence, λ = i is not a true eigenvalue, as there exist
no corresponding eigenfunctions which are localized in space.

What is the effect of this spurious zero? Set

γ2 := λ− i. (4.15)

This transformation defines a Riemann surface, and with respect to the Evans function the principal sheet
is given by arg(γ) ∈ (−3π/4, π/4]. Zeros of the Evans function on this sheet correspond to true eigenvalues,
whereas zeros on the other sheet correspond to resonance poles. On the Riemann surface the Evans function
is given by

E(γ) = 8a(k(γ))2ā(k̄(γ))2γ
√

γ2 + 2i.

The Evans function is analytic on the Riemann surface, and in addition to the four zeros at γ = e−iπ/4 (λ = 0),
it has a simple zero at γ = 0.

Now suppose that the NLS undergoes a smooth perturbation of O(ε). Assuming that the Evans function
remains analytic on the Riemann surface, the zero at γ = 0 will generically move onto one of the two sheets
and also be of O(ε). If the perturbed zero is on the principal sheet, then an eigenvalue has been created via
an edge bifurcation, and from equation (4.15) it is seen that it will be O(ε2) from the branch point λ = i.
Thus, upon perturbation an eigenvalue can be created where once there was none. The spurious zero then
leads to the potential creation of an eigenvalue upon a perturbation of the vector field. This is illustrated in
Figure 1.

While this is an interesting topic, it is beyond the scope of this article. The interested reader is referred
to the review article [26] and the references therein. For a full treatment of the NLS hierarchy one should
consult [25].
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Re λ

Im λ

Re γ

Im γ

Figure 1: The Riemann surface is given in the left panel, and the spectral plane is in the right
panel. The physical sheet of the Riemann surface satisfies arg(γ) ∈ (−3π/4, π/4], and
the boundary between the two sheets is given by Re γ = Im γ. The circle represents the
zero of the Evans function for the unperturbed problem, and the squares and crosses
represent the possible movement of the zero under perturbation. Note that an eigenvalue
is created only if the zero on the Riemann surface moves onto the physical sheet.

5. Dissipative Perturbations

In the previous sections the spectrum was located via an Evans function calculation. The calculation was
performed on a class of well-understood problems. In this section we will start with the assumption that
the unperturbed problem is well-understood, and then use the Evans function to understand the perturbed
problem. In particular, we are interested in dissipative perturbations of Hamiltonian systems.

5.1. Theoretical results

Let H be a Hilbert space with inner product 〈·, ·〉, let J is an invertible skew-symmetric operator with
bounded inverse, and consider the Hamiltonian system on H given by

dv

dt
= JE′(v)

which respects a finite-dimensional abelian connected Lie group G with Lie algebra g on H. Assume that
dim(g) = n. It will be assumed that the system is invariant under the action of a unitary representation T .
We seek relative equilibria of the form

v(t) = T (exp(ωt))v0,

for appropriate ω ∈ g. Therefore, change variables and consider

v(t) = T (exp(ωt))u(t),

so that u satisfies
du

dt
= JE′

0(u;ω), (5.1)

where
E′

0(u;ω) := E′(u)− J−1Tωu.

Here Tω is the skew-symmetric operator which is the generator of exp(ωt). The new Hamiltonian depends
therefore on ω. We assume that the steady-state equation

E′
0(u;ω) = 0

has a smooth family Φ(ω) of solutions, where ω varies in g.
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Let the linear operator about the wave Φ be denoted by JE′′
0 . Since G is abelian, it is known that the

operator JE′′
0 will have a nontrivial kernel:

JE′′
0 (Φ)TωiΦ = 0, JE′′

0 (Φ)∂ωiΦ = TωiΦ, (5.2)

for i = 1, . . . , n, with the set {Tω1Φ, . . . , Tωn
Φ} being orthogonal. Here ∂σ := ∂/∂σ for σ ∈ g. Furthermore,

if the symmetric matrix D0 ∈ Rn×n given by

(D0)ij := 〈∂ωj
Φ, E′′

0 ∂ωi
Φ〉 (5.3)

is invertible, then this set is a basis for the kernel. Thus, under the assumption that D0 is nonsingular,
when considering the eigenvalue problem JE′′

0 u = λu one has that λ = 0 is an eigenvalue with geometric
multiplicity n and algebraic multiplicity 2n.

Now consider the perturbed problem given by

du

dt
= JE′

0(u) + εE1(u), (5.4)

where E1 represents the dissipative perturbation. It will be assumed that while the perturbation breaks the
Hamiltonian structure, it does not remove any of the symmetries. When considering the persistence of the
wave, a standard Lyapunov-Schmidt reduction reveals the following (see [21] for the case of Hamiltonian
perturbations):
Lemma 5.1. The wave u = Φ(ω) + εΦε + O(ε2) will persist only if the condition

〈J−1E1(Φ(ω)), Tωj
Φ〉 = 0, j = 1, . . . , n (5.5)

holds for some ω ∈ g. Furthermore,

Φε = −(E′′
0 (Φ(ω))J−1E1(Φ(ω)).

The above lemma yields a necessary, but not sufficient, condition for persistence. Since the perturbation
does not destroy any of the symmetries associated with the original system, the eigenfunction Tωj Φ will
persist; in particular, one has the formal expansion Tωj Φ + εTωj Φε + O(ε2). Now write the linearization
about the perturbed wave as JE′′

0 + εLε + O(ε2), and define the matrix M ∈ Rn×n by

Mij := 〈Lε∂ωj Φ− Tωj Φε, J
−1TωiΦ〉.

Lemma 5.2. Suppose that M is nonsingular. Then equation (5.5) is also sufficient.

Since the Hamiltonian structure has been broken, n eigenvalues of O(ε) will leave the origin. Another
Lyapunov-Schmidt reduction, similar to that in [21, Theorem 4.4] (also see the more general case in [22,
Section 4.3]), allows one to track the location of these eigenvalues.
Lemma 5.3. The nonzero O(ε) eigenvalues and associated eigenfunctions for the perturbed eigenvalue
problem

(JE′′
0 + εLε)u = λu

are given by

λ = ελ1 + O(ε2), u =
n∑

j=1

vjTωj Φ + O(ε),

where λ1 is the eigenvalue and v is the associated eigenvector for the generalized eigenvalue problem

(D0λ1 −M)v = 0.

Remark 5.4. In [20] it was shown in specific examples that the perturbation expansion for the Evans
function satisfies

E(λ, ε) = det(D0λ−Mε) + O(ε2).

In general, however, it is easier to find the eigenvalues of a matrix rather than locate the zeros of its
characteristic polynomial; hence, the formulation in Lemma 5.3.

Now, it may also be possible for eigenvalues to pop out of the essential spectrum, creating internal modes
via an edge bifurcation [24, 25, 31, 35] (also see Section 4.1). Since these eigenvalues will be of O(1), they
will not be captured by the perturbation expansion given in Lemma 5.3. However, as it will be seen in the
example in the next section, this is not necessarily problematic.
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5.2. Example: Nonlinear Schrödinger equation

The theoretical results will now be applied to a particular dissipative perturbation of the nonlinear
Schrödinger equation. Consider

i∂tq +
1
2
∂2

xq − ωq + |q|2q = iεR(q, q∗), (5.6)

where
R(q, q∗) :=

1
2
d1∂

2
xq + d2q + d3|q|2q + d4|q|4q.

Here dj ∈ R and ω ∈ R+. Here d1 > 0 describes spectral filtering, and a consequence of the sign is that
the perturbed equation is dissipative. The parameter d2 < 0 accounts for linear loss in the fiber, and a
consequence of this sign is that any instability of a wave arises only from point spectrum. The parameter d3

accounts for nonlinear gain or loss, and d4 represents a higher-order correction to the nonlinear gain or loss.
The unperturbed problem is well-understood (see Section 4). Solutions to equation (5.6) are invariant

under the action
T (ξ, θ)q = q(x + ξ)eiθ,

so that the unperturbed problem has two symmetries. The linearized problem associated with the unper-
turbed problem is as follows. After writing equation (5.6) in real and imaginary parts, it is seen that the
linearization when ε = 0 is JL0, where

J =
(

0 1
−1 0

)
, L0 = diag(Lr, Li),

with
Lr := −1

2
∂2

x + ω − 3Q0(x)2, Li := −1
2
∂2

x + ω −Q0(x)2.

Here, the soliton is given by Q0(x) :=
√

2ω sech(
√

2ω x). Furthermore, one has that the eigenfunctions given
in equation (5.2) are

TξQ0 = ∂xQ0 e1, ∂ξQ0 = −xQ0 e2,

and
TφQ0 = Q0 e2, ∂φQ0 = ∂ωQ0 e1.

Here ej ∈ R2 represents the jth unit vector.
Lemma 5.1 states a necessary condition for the persistence of the wave Q0. A routine calculation shows

that the condition reduces to
〈R(Q0, Q

∗
0), Q0〉 = 0,

i.e.,

e(ω) := d4ω
2 +

5
32

(4d3 − d1)ω +
15
32

d2 = 0.

Define

d∗4 :=
5

384
(4d3 − d1)2

d2
.

Assuming that
4d3 − d1 > 0, d∗4 < d4 < 0,

e(ω) = 0 has the solutions

ω = ω± := − 5
64d4

(
(4d3 − d1)±

√
(4d3 − d1)2 −

384
5

d2d4

)
.

For ω = ω± the perturbed wave is given by

q =
(

Q0(x)
0

)
+ ε

(
0

Q0(x)
∫ x

0
θ(s) ds

)
+ O(ε2), (5.7)
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where

θ(s) = − 1√
2ω

tanh(
√

2ω s)
(

d1ω + d2 −
8
5
d4ω

2 sech2(
√

2ω s)
)

.

Note that
lim

d4→d∗4
ω± = −6

d2

4d3 − d1
.

Thus, when considering the existence problem there is a saddle-node bifurcation at d4 = d∗4. One expects
that at most only one of these perturbed waves will be stable. Also note that the condition d4 6= 0 is crucial
for the bifurcation to occur. The calculations given below will show that if d4 = 0, in which case

ω = lim
d4→0

ω− = −3
d2

4d3 − d1
,

then this wave will be unstable.
Now let us consider the stability of the perturbed wave. The matrix D0 given in Lemma 5.3 is given by

D0 = diag(〈Φx,−xΦ〉,−∂ω〈Φ,Φ〉)
= 2 diag((2ω)1/2,−(2ω)−1/2),

The first-order correction of the linearized operator is given by

Lε = (
1
2
d1∂

2
x + d2) id +d3Q

2
0

(
3 0
0 1

)
+ d4Q

4
0

(
5 0
0 1

)
+ 2Q2

0

∫ x

0

θ(s) ds

(
−1 0

0 1

)
.

Upon using the perturbation expansion in equation (5.7), the matrix M used in the stability calculation
present in Lemma 5.3 is then given by

M(ω±) = diag(C1d1,∓C2

√
(4d3 − d1)2 − 384d2d4/5),

where Ci is a positive constant for i = 1, 2. Thus, upon using the result of Lemma 5.3 the location of the
O(ε) eigenvalues is given by

λrot = −Crotd1ε + O(ε2)

λamp = Camp

{
−
√

(4d3 − d1)2 − 384d2d4/5 ε + O(ε2), ω = ω+√
(4d3 − d1)2 − 384d2d4/5 ε + O(ε2), ω = ω−.

(5.8)

In the above the constants are again positive. The eigenvalue λrot is always negative, whereas the sign of the
eigenvalue λamp depends upon the amplitude of the wave. It should be noted that the adiabatic approach
yields the same conclusion as above [32, 37]. The bifurcation diagram is given in Figure 2.

Unfortunately, the result of equation (5.8) is not enough to conclude that the perturbed wave with ω = ω+

is stable, as all of the possible instability mechanisms have not yet been captured. As discussed in Section 4.1,
it is possible for a single eigenvalue to leave the edge of the continuous spectrum upon perturbation. The
location of this eigenvalue must now be determined.

The radiation modes themselves are readily computed. The upper branch is given by the dispersion
relation

λ = i(ω +
1
2
k2) + ε(d2 −

1
2
d1)k2, k ∈ R.

Since by assumption d2 < 0 and d1 > 0, the continuous spectrum moves into the left-half of the complex
plane and does not act to destabilize the wave.

Now, as in Section 4.1, one must track the zero of the Evans function on the appropriate Riemann surface
to determine if any eigenvalue arises from an edge bifurcation. As is seen in [24], the appropriate Riemann
surface is defined by

γ2 := (1− iεd1)λ− iω − ε(d1ω + d2) + iε2d1d2. (5.9)

Since the zero γedge on the Riemann surface will satisfy γedge = O(ε), by solving the above for λ it is seen
that if an eigenvalue pops out of the continuous spectrum due to an edge bifurcation, it is given by

λedge = iω + εd2 + O(ε2).
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d4

ω

d∗4

Figure 2: The set e(ω) = 0 for d1 > 0, d2 < 0, and d3 > d1/4 fixed. The insets give the location
of the O(ε) eigenvalues for ω = ω+ (solid line) and ω = ω− (dashed line). The cross
represents λrot and the square represents λamp.

Thus, if d2 = O(1), then it is necessarily true that λedge is contained in the left-half of the complex plane,
and hence does not contribute to an instability.

However, now suppose that d2 = O(ε). It is then possible to have Re λedge > 0, which implies that it
may be possible for the adiabatically stable wave with ω = ω+ to destabilize via a Hopf bifurcation. In
order to track this eigenvalue one needs to explicitly compute the Evans function on the Riemann surface
given in equation (5.9), and then track the zero as it moves under the perturbation. This tedious calculation
is carried out in [23]. It is determined therein that the zero moves onto the second sheet of the Riemann
surface, and hence an eigenvalue is not created via an edge bifurcation. The perturbed wave with ω = ω+

is then spectrally stable, and since the system is dissipative, this then implies that it is stable.
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