REFLECTIONS ON THE BING-BORSUK CONJECTURE

J. L. BRYANT

The question as to whether a homogeneous euclidean neighborhood retract (ENR) is a topological manifold goes back, at least, to the paper by Bing and Borsuk [2] in which they show that an n-dimensional homogeneous ENR is a topological manifold when $n<3$. In this paper they discuss the question as to whether the result holds in higher dimensions and suggest that, at the least, homogeneous ENR's should be generalized manifolds (i.e., ENR homology manifolds). One of the main conjectures in [6] is that a generalized n-manifold, $n \geq 5$, satisfying the disjoint disks property is homogeneous. Thus, the spaces constructed in [6] may provide examples of homogeneous ENR's that are not topological manifolds. Another possible example was constructed by Jakobsche in [11] in dimension 3, assuming the Poincaré conjecture is false. Our first attempt to show that a homogeneous ENR is a homology manifold [5] succeeded at the expense of imposing the condition that the local homology groups of the space are finitely generated in all dimensions. This result was, in fact, already to be found in [4]. More specifically, the following theorem is known:

Theorem 1 ([4, 5]). If X is an n-dimensional, homogeneous ENR, and $H_{k}(X, X-x ; \mathbb{Z})$ is finitely generated for some (and, hence, all) x, then X is a homology manifold.

In this talk we discuss attempts to prove the conjecture of Bing and Borsuk:

Conjecture 1. If X is an n-dimensional, homogeneous ENR, then X is a homology n-manifold.

Related to this conjecture is an older conjecture of Borsuk [3].
Conjecture 2. There is no finite dimensional, compact, absolute retract.

Definitions. A homology n-manifold is a space X having the property that for each $x \in X$,

Key words and phrases. generalized manifolds, homogeneity.

$$
H_{k}(X, X-x ; \mathbb{Z}) \cong \begin{cases}\mathbb{Z} & k=n \\ 0 & k \neq n\end{cases}
$$

A euclidean neighborhood retract (ENR) is a space homeomorphic to a closed subset of euclidean space that is a retract of some neighborhood of itself. A topological space X is homogeneous if, for any two points x and y in X, there is a homeomorphism of X onto itself taking x to y.

We will assume from now on that X is a n-dimensional homogeneous ENR and R is a PID. It's easy to get started:

Lemma 1. For all $x \in X, H_{0}(X, X-x ; R)=0$, if $n>0$ and $H_{1}(X, X-x ; R)=0$, if $n>1$.

One of the main problems that arises is the possibility that for some (and hence, all) $x \in X, H_{k}(X, X-x ; \mathbb{Z})$ is infinitely generated for some $k \geq 2$. This difficulty could be overcome for $k<n$, if k-dimensional homology classes are carried by k-dimensional subsets of X. There are counterexamples for k-dimensional homotopy classes when $k \geq 2[7,10]$, but I know of no counterexamples for carriers of homology classes.

Via Alexander duality, mapping cylinder neighborhoods provide an alternative way to view the local homology groups of X. Assume X is nicely embedded in \mathbb{R}^{n+m}, for some $m \geq 3$, so that X has a mapping cylinder neighborhood $N=C_{\phi}$ of a map $\phi: \partial N \rightarrow X$, with mapping cylinder projection $\pi: N \rightarrow X[12,13]$. Given a subset $A \subseteq X$, let $A^{*}=\pi^{-1}(A)$ and $\dot{A}=\phi^{-1}(A)$.

By a result of Daverman-Husch [8], the Bing-Borsuk Conjecture is equivalent to

Conjecture 3. $\pi: N \rightarrow X$ is an approximate fibration.
Duality shows that the local homology of X is captured in the cohomology of the fibers of this map (in the dual dimensions).

Lemma 2. If A is a closed subset of X, then $H_{k}(X, X-A ; R) \cong$ $\check{H}_{c}^{n+m-k}\left(A^{*}, \dot{A} ; R\right)$.

Proof. Suppose A is closed in X. Since $\pi: N \rightarrow X$ is a proper homotopy equivalence,

$$
H_{k}(X, X-A ; R) \cong H_{k}\left(N, N-A^{*} ; R\right) .
$$

Since ∂N is collared in N,

$$
H_{k}\left(N, N-A^{*} ; R\right) \cong H_{k}\left(\operatorname{int} N, \operatorname{int} N-A^{*} ; R\right),
$$

and by Alexander duality,

$$
\begin{gathered}
H_{k}\left(\operatorname{int} N, \operatorname{int} N-A^{*} ; R\right) \cong \check{H}_{c}^{n+m-k}\left(A^{*}-\dot{A} ; R\right) \\
\cong \check{H}_{c}^{n+m-k}\left(A^{*}, \dot{A} ; R\right)
\end{gathered}
$$

(since \dot{A} is also collared in A^{*}).
Lemma 3. $H_{k}(X, X-x ; R)=\lim _{\rightarrow} H_{k}^{\ell f}(U ; R)$, where the limit is taken over open neighborhoods U of x.

Proof. Again, using Lemma 2 and the fact that π is proper, we have, for each neighborhood U of x in X,

$$
\begin{gathered}
H_{k}^{\ell f}(U ; R) \cong H_{k}^{\ell f}\left(U^{*} ; R\right) \cong \\
H^{n+m-k}\left(U^{*}, \dot{U} ; R\right) \rightarrow \check{H}^{n+m-k}\left(x^{*}, \dot{x} ; R\right) \cong H_{k}(X, X-x ; R) .
\end{gathered}
$$

As the next lemma shows, homogeniety, specifically microhomogeneity, implies that any finitely generated submodule of the local homology module $H_{k}(X, X-x ; R)$ propagates naturally to all points near x.

Lemma 4. Suppose F is a finitely generated submodule of $H_{k}(X, X-$ $x ; R), k \geq 0$. Then there is a neighborhood U of x and a submodule $F_{0} \subseteq H_{k}(X, X-U ; R)$ such that
(i) $F_{0}=\operatorname{im} F$ under inclusion,
(ii) for all $y \in U$, the inclusion $H_{k}(X, X-U ; R) \rightarrow H_{k}(X, X-y ; R)$ is one-to-one on F_{0}.

Proof. Given finitely generated $F \subseteq H_{k}(X, X-x ; R)$.
Let a_{1}, \ldots, a_{r} be generators of F, represented by singular chains c_{1}, \ldots, c_{r}, respectively, and let B_{1}, \ldots, B_{r} be the carriers of $\partial c_{1}, \ldots, \partial c_{r}$, respectively. $B_{1} \cup \ldots \cup B_{r}$ is a compact set in $X-x$, and there is a neighborhood U_{1} of x such that for every smaller neighborhood V of x,

$$
F \subseteq \operatorname{im}\left(H_{k}(X, X-V ; R) \rightarrow H_{k}(X, X-x ; R)\right.
$$

By Effros Theorem [9, 1], homogeneity implies micro-homogeneity: Given $\epsilon>0$ there is a $\delta>0$, such that if $d(x, y)<\delta$, then there is a homeomorphism $h_{y}: X \rightarrow X$ such that $h_{y}(x)=y$ and h_{y} moves no point of $\left(B_{1} \cup \ldots \cup B_{r}\right)$ more than ϵ.

For ϵ small, h_{y} is homotopic to the identity on X by a homotopy whose restriction to $\left(B_{1} \cup \ldots \cup B_{r}\right)$ has image in $X-x$, hence, in $X-U$ for some neighborhood U of x.

The Leray spectral sequence of the Leray sheaf $\mathcal{H}^{q}(\pi)$ of $\pi: N \rightarrow X$, with stalk $\mathcal{H}^{q}(\pi)_{x}=\check{H}^{q}\left(x^{*}, \dot{x} ; R\right)$, has E_{2}-term

$$
E_{2}^{p, q}=H_{c}^{p}\left(X ; \mathcal{H}^{q}(f)\right),
$$

and converges to

$$
E_{\infty}^{p, q}=H_{c}^{p+q}(N, \partial N ; R) .
$$

In [5] it is proved that the Bing-Borsuk Conjecture is equivalent to
Conjecture 4. For all $q, \mathcal{H}^{q}(\pi)$ is locally constant.
Theorem 2. If R is a PID, then $H_{n}(X, X-x ; R) \neq 0$. Moreover, if U is a sufficiently small neighborhood of $x, H_{c}^{n}(U ; R) \neq 0$, and $H_{n}^{\ell f}(U ; R) \neq 0$ and free.

Proof. Since U is an ENR of dimension n, the locally finite homology of U can be computed from a chain complex (using nerves of sufficiently fine covers of U of order $n+1$) that is 0 in dimension $n+1$; hence, $H_{n}^{\ell f}(U ; R)$ is free. Thus, $H_{c}^{n}(U ; R)=0$ implies $H_{n}^{\ell f}(U ; R)=0$. If $H_{n}^{\ell f}(U ; R)=0$ for every neighborhood U of x, then $\check{H}^{m}\left(x^{*}, \dot{x} ; R\right) \cong$ $H_{n}(X, X-x ; R)=\lim _{\rightarrow} H_{n}^{\ell f}(U ; R)=0$, so that \mathcal{H}^{m} is the 0 sheaf.

Restrict the map π to $\left(U^{*}, \dot{U}\right)$, where U is an open neighborhood of x. By definition,

$$
E_{3}^{n, q}=\operatorname{ker}\left(d_{2}: E_{2}^{n, q} \rightarrow E_{2}^{n+2, q-1}\right) / \operatorname{im}\left(d_{2}: E_{2}^{n-2, q+1} \rightarrow E_{2}^{n, q}\right) .
$$

Since $\operatorname{dim} U=n$ implies $E_{2}^{n+2, q-1}=0$, so that $E_{2}^{n, m}$ maps onto $E_{3}^{n, m}$. Similarly, $E_{r}^{n, m}$ maps onto $E_{r+1}^{n, m}$, for $r \geq 2$, so that $E_{2}^{n, m}$ maps onto $E_{\infty}^{n, m}$. However, if U is connected, $E_{\infty}^{n, m}=H_{c}^{n+m}\left(U^{*}, \dot{U} ; R\right) \cong R \neq$ 0 . Hence, \mathcal{H}^{m} is not 0 , which, in turn, implies $H_{n}^{\ell f}(U ; R) \neq 0$ and $H_{c}^{n}(U ; R) \neq 0$, for some neighborhood U of x.
Remark. The argument in this proof can be used to see that $H_{c}^{n}\left(X ; \mathcal{H}^{m}\right) \neq$ 0 ; but, if $H_{n}(X, X-x ; R)$ is not finitely generated, we cannot necessarily conclude that the ordinary cohomology of X is nonzero. If so, we would have a proof of Conjecture 2.

Suppose that F is a finitely generated submodule of $H_{k}(X, X-x ; R)$. By Lemma 4 there is a neighborhood U of x and a constant sheaf \mathcal{F} on U such that $\mathcal{F} \subseteq \mathcal{H}^{q} \mid U, q=n+m-k$, and $\mathcal{F}_{x}=F$. Since $\operatorname{dim} U=n$, the short exact sequence of sheaves

$$
0 \rightarrow \mathcal{F} \rightarrow \mathcal{H}^{q} \mid U \rightarrow \text { coker } \iota \rightarrow 0
$$

induces a long exact sequence on Borel-Moore homology

$$
\begin{aligned}
0 & \rightarrow H_{n}(U ; \mathcal{F}) \rightarrow H_{n}\left(U ; \mathcal{H}^{q}\right) \\
& \rightarrow H_{n}(U ; \operatorname{coker} \iota) \rightarrow \cdots
\end{aligned}
$$

which implies $H_{n}(U ; \mathcal{F}) \rightarrow H_{n}\left(U ; \mathcal{H}^{q}\right)$ is one-to-one.
We would like for the same to be true for inclusion in cohomology,

$$
\operatorname{im}\left(H^{n}(U ; \mathcal{F}) \rightarrow H^{n}\left(U ; \mathcal{H}^{q}\right)\right)
$$

since this would allow us to get a good relationship between sheaf cohomology of U and ordinary cohomology of $\left(U^{*}, \dot{U}\right)$.

Unfortunately, there is nothing that seems to preclude the Bockstein

$$
H^{n-1}(U ; \operatorname{coker} \iota) \rightarrow H^{n}(U ; \mathcal{F})
$$

from being onto. Indeed, it is possible to construct a rather "homogeneous" looking sheaf over the interval $(0,1)$, having infinitely generated stalks, for which this Bockstein (with $n=1$) is onto.

References

[1] R. Ancel, An alternative proof and applications of a theorem of E. G. Efros Mich. Math. J. 34(1987), $39-55$.
[2] R.H. Bing and K. Borsuk, Some remarks concerning topologically homogeneous spaces, Ann. of Math. 81 (2) (1965), 100-111.
[3] K. Borsuk, Theory of Retracts, Polish Scientific Publishers, Warsaw, 1967.
[4] G. Bredon, Sheaf Theory, McGraw-Hill, New York, 1967.
[5] J. Bryant, Homogeneous ENR's, Topology and its Applications 27(1987), 301 - 306.
[6] J. Bryant, S. Ferry, W. Mio, and S. Weinberger, Topology of homology manifolds, Ann. of Math.(2) 143 (1996), 435-467.
[7] R.Daverman and J.Walsh, A ghastly generalized n-manifold, Illinois J. Math. 25 (1981), no. 4, 555-576.
[8] R.Daverman and J.Husch, Decompositions and approximate fibrations, Mich Math. J. 31 (1984), 197-214.
[9] E.G. Effros, Tramsformation groups and C^{*}-algebras, Ann. of Math. (2) 81(1965), 38 - 55.
[10] D.Halverson, Detecting codimension one manifold factors with the disjoint homotopies property, Topology Appl. 117 (2002), no. 3, 231-258.
[11] W. Jakobsche, The Bing-Borsuk conjecture is stronger than the Poincaré conjecture, Fund. Math. 106(1980), s127-134.
[12] R. Miller, Mapping cylinder neighborhoods of some ANR's, Ann. of Math. (2) 103(1976), 417-427.
[13] J. E. West, Mapping Hilbert cube manifolds to ANR's: a solution to a conjecture of Borsuk, Ann. of Math. 106 (1977), 1-18.

Department of Mathematics, Florida State University, TallahasSEe, FL 32306 USA

E-mail address: bryant@math.fsu.edu

