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The question as to whether a homogeneous euclidean neighborhood
retract (ENR) is a topological manifold goes back, at least, to the pa-
per by Bing and Borsuk [2] in which they show that an n-dimensional
homogeneous ENR is a topological manifold when n < 3. In this pa-
per they discuss the question as to whether the result holds in higher
dimensions and suggest that, at the least, homogeneous ENR’s should
be generalized manifolds (i.e., ENR homology manifolds). One of the
main conjectures in [6] is that a generalized n-manifold, n ≥ 5, satisfy-
ing the disjoint disks property is homogeneous. Thus, the spaces con-
structed in [6] may provide examples of homogeneous ENR’s that are
not topological manifolds. Another possible example was constructed
by Jakobsche in [11] in dimension 3, assuming the Poincaré conjecture
is false. Our first attempt to show that a homogeneous ENR is a ho-
mology manifold [5] succeeded at the expense of imposing the condition
that the local homology groups of the space are finitely generated in all
dimensions. This result was, in fact, already to be found in [4]. More
specifically, the following theorem is known:

Theorem 1 ([4, 5]). If X is an n-dimensional, homogeneous ENR,
and Hk(X, X − x; Z) is finitely generated for some (and, hence, all) x,
then X is a homology manifold.

In this talk we discuss attempts to prove the conjecture of Bing and
Borsuk:

Conjecture 1. If X is an n-dimensional, homogeneous ENR, then X
is a homology n-manifold.

Related to this conjecture is an older conjecture of Borsuk [3].

Conjecture 2. There is no finite dimensional, compact, absolute re-
tract.

Definitions. A homology n-manifold is a space X having the prop-
erty that for each x ∈ X,

Key words and phrases. generalized manifolds, homogeneity.
29



30 J. L. BRYANT

Hk(X, X − x; Z) ∼=

{
Z k = n

0 k 6= n.

A euclidean neighborhood retract (ENR) is a space homeomorphic
to a closed subset of euclidean space that is a retract of some neigh-
borhood of itself. A topological space X is homogeneous if, for any
two points x and y in X, there is a homeomorphism of X onto itself
taking x to y.

We will assume from now on that X is a n-dimensional homogeneous
ENR and R is a PID. It’s easy to get started:

Lemma 1. For all x ∈ X, H0(X, X − x; R) = 0, if n > 0 and
H1(X, X − x; R) = 0, if n > 1.

One of the main problems that arises is the possibility that for some
(and hence, all) x ∈ X, Hk(X, X−x; Z) is infinitely generated for some
k ≥ 2. This difficulty could be overcome for k < n, if k-dimensional
homology classes are carried by k-dimensional subsets of X. There are
counterexamples for k-dimensional homotopy classes when k ≥ 2 [7, 10],
but I know of no counterexamples for carriers of homology classes.

Via Alexander duality, mapping cylinder neighborhoods provide an
alternative way to view the local homology groups of X. Assume X is
nicely embedded in Rn+m, for some m ≥ 3, so that X has a mapping
cylinder neighborhood N = Cφ of a map φ : ∂N → X, with mapping
cylinder projection π : N → X [12, 13]. Given a subset A ⊆ X, let
A∗ = π−1(A) and Ȧ = φ−1(A).

By a result of Daverman-Husch [8], the Bing-Borsuk Conjecture is
equivalent to

Conjecture 3. π : N → X is an approximate fibration.

Duality shows that the local homology of X is captured in the coho-
mology of the fibers of this map (in the dual dimensions).

Lemma 2. If A is a closed subset of X, then Hk(X, X − A; R) ∼=
Ȟn+m−k

c (A∗, Ȧ; R).

Proof. Suppose A is closed in X. Since π : N → X is a proper homo-
topy equivalence,

Hk(X, X − A; R) ∼= Hk(N, N − A∗; R).

Since ∂N is collared in N ,

Hk(N, N − A∗; R) ∼= Hk(intN, intN − A∗; R),
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and by Alexander duality,

Hk(intN, intN − A∗; R) ∼= Ȟn+m−k
c (A∗ − Ȧ; R)

∼= Ȟn+m−k
c (A∗, Ȧ; R)

(since Ȧ is also collared in A∗). �

Lemma 3. Hk(X, X −x; R) = lim
→

H`f
k (U ; R), where the limit is taken

over open neighborhoods U of x.

Proof. Again, using Lemma 2 and the fact that π is proper, we have,
for each neighborhood U of x in X,

H`f
k (U ; R) ∼= H`f

k (U∗; R) ∼=

Hn+m−k(U∗, U̇ ; R) → Ȟn+m−k(x∗, ẋ; R) ∼= Hk(X, X − x; R).

�

As the next lemma shows, homogeniety, specifically microhomogene-
ity, implies that any finitely generated submodule of the local homology
module Hk(X,X − x; R) propagates naturally to all points near x.

Lemma 4. Suppose F is a finitely generated submodule of Hk(X, X −
x; R), k ≥ 0. Then there is a neighborhood U of x and a submodule
F0 ⊆ Hk(X, X − U ; R) such that

(i) F0 = im F under inclusion,
(ii) for all y ∈ U , the inclusion Hk(X, X−U ; R) → Hk(X, X−y; R)

is one-to-one on F0.

Proof. Given finitely generated F ⊆ Hk(X, X − x; R).
Let a1, . . . , ar be generators of F , represented by singular chains

c1, . . . , cr, respectively, and let B1, . . . , Br be the carriers of ∂c1, . . . , ∂cr,
respectively. B1 ∪ . . . ∪ Br is a compact set in X − x, and there is a
neighborhood U1 of x such that for every smaller neighborhood V of x,

F ⊆ im(Hk(X, X − V ; R) → Hk(X, X − x; R).

By Effros Theorem [9, 1], homogeneity implies micro-homogeneity:
Given ε > 0 there is a δ > 0, such that if d(x, y) < δ, then there is
a homeomorphism hy : X → X such that hy(x) = y and hy moves no
point of (B1 ∪ . . . ∪Br) more than ε.

For ε small, hy is homotopic to the identity on X by a homotopy
whose restriction to (B1 ∪ . . . ∪ Br) has image in X − x, hence, in
X − U for some neighborhood U of x. �
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The Leray spectral sequence of the Leray sheaf Hq(π) of π : N → X,
with stalk Hq(π)x = Ȟq(x∗, ẋ; R), has E2-term

Ep,q
2 = Hp

c (X;Hq(f)),

and converges to
Ep,q
∞ = Hp+q

c (N, ∂N ; R).

In [5] it is proved that the Bing-Borsuk Conjecture is equivalent to

Conjecture 4. For all q, Hq(π) is locally constant.

Theorem 2. If R is a PID, then Hn(X, X − x; R) 6= 0. Moreover,
if U is a sufficiently small neighborhood of x, Hn

c (U ; R) 6= 0, and
H`f

n (U ; R) 6= 0 and free.

Proof. Since U is an ENR of dimension n, the locally finite homology of
U can be computed from a chain complex (using nerves of sufficiently
fine covers of U of order n + 1) that is 0 in dimension n + 1; hence,
H`f

n (U ; R) is free. Thus, Hn
c (U ; R) = 0 implies H`f

n (U ; R) = 0. If
H`f

n (U ; R) = 0 for every neighborhood U of x, then Ȟm(x∗, ẋ; R) ∼=
Hn(X, X − x; R) = lim

→
H`f

n (U ; R) = 0, so that Hm is the 0 sheaf.

Restrict the map π to (U∗, U̇), where U is an open neighborhood of
x. By definition,

En,q
3 = ker(d2 : En,q

2 → En+2,q−1
2 )/im(d2 : En−2,q+1

2 → En,q
2 ).

Since dim U = n implies En+2,q−1
2 = 0, so that En,m

2 maps onto En,m
3 .

Similarly, En,m
r maps onto En,m

r+1 , for r ≥ 2, so that En,m
2 maps onto

En,m
∞ . However, if U is connected, En,m

∞ = Hn+m
c (U∗, U̇ ; R) ∼= R 6=

0. Hence, Hm is not 0, which, in turn, implies H`f
n (U ; R) 6= 0 and

Hn
c (U ; R) 6= 0, for some neighborhood U of x. �

Remark. The argument in this proof can be used to see that Hn
c (X;Hm) 6=

0; but, if Hn(X, X − x; R) is not finitely generated, we cannot neces-
sarily conclude that the ordinary cohomology of X is nonzero. If so,
we would have a proof of Conjecture 2.

Suppose that F is a finitely generated submodule of Hk(X, X−x; R).
By Lemma 4 there is a neighborhood U of x and a constant sheaf F on
U such that F ⊆ Hq|U , q = n + m− k, and Fx = F . Since dim U = n,
the short exact sequence of sheaves

0 → F → Hq|U → coker ι → 0

induces a long exact sequence on Borel-Moore homology

0 → Hn(U ;F) → Hn(U ;Hq)

→ Hn(U ; coker ι) → · · · ,
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which implies Hn(U ;F) → Hn(U ;Hq) is one-to-one.
We would like for the same to be true for inclusion in cohomology,

im(Hn(U ;F) → Hn(U ;Hq)),

since this would allow us to get a good relationship between sheaf
cohomology of U and ordinary cohomology of (U∗, U̇).

Unfortunately, there is nothing that seems to preclude the Bockstein

Hn−1(U ; coker ι) → Hn(U ;F)

from being onto. Indeed, it is possible to construct a rather “homoge-
neous” looking sheaf over the interval (0, 1), having infinitely generated
stalks, for which this Bockstein (with n = 1) is onto.
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jecture, Fund. Math. 106(1980), s127-134.
[12] R. Miller, Mapping cylinder neighborhoods of some ANR’s, Ann. of Math. (2)

103(1976), 417–427.
[13] J. E. West, Mapping Hilbert cube manifolds to ANR’s: a solution to a conjec-

ture of Borsuk, Ann. of Math. 106 (1977), 1–18.

Department of Mathematics, Florida State University, Tallahas-
see, FL 32306 USA

E-mail address: bryant@math.fsu.edu


