ON CERTAIN I-D COMPACTA

TADEUSZ DOBROWOLSKI

Abstract

Three examples of nontypical i-d compacta are presented. An application to absorbers follows.

1. Nontypical compacta

The typical property, for an i-d compactum K, is that K is homeomorphic to its square, that is,

$$
K \cong K \times K
$$

Here are the properties that are stronger than the negation of the above:
(1) No open subset of $K \times K$ can be embedded into $K \times I^{q}$ for any $q(I$ stands for $[-1,1])$.
(2) $K \times K$ cannot be embedded into $K \times \sigma ; \sigma=\bigcup_{q=1}^{\infty} I^{q} \subset Q=I^{\infty}$.
(3) $K \times K$ cannot be embedded into $K \times I^{q}$ for any q.
(4) $K \times K$ cannot be embedded into K.

Definition. A map $K \times K \supset A \rightarrow Z$ is fiberwise injective ($f-i$) if restricted to every fiber $\{k\} \times K$ or $K \times\{k\}$ it is injective.

Fact 1. If K is carries either a group structure or a convex structure then $K \times K$ admits a f-i map into K. The maps

$$
(x, y) \rightarrow x y
$$

or

$$
(x, y) \rightarrow \frac{1}{2}(x+y)
$$

are easily seen to be f-i.
Here are counterparts of properties (1)-(4):
(1') No open set U of $K \times K$ admits a f-i map into $Z=K \times I^{q}$ for any q.
(2') There is no f-i map $K \times K \rightarrow Z=K \times \sigma$.
(3') There is no f-i map $K \times K \rightarrow Z=K \times I^{q}$ for any q.
(4') There is no f-i map $K \times K \rightarrow K$.

[^0]For a compactum K, we have the following implications

$$
1^{\prime} \Rightarrow 1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4
$$

and

$$
1^{\prime} \Rightarrow 2^{\prime} \Rightarrow 3^{\prime} \rightarrow 4^{\prime}
$$

The implications $1 \Rightarrow 2$ and $1^{\prime} \Rightarrow 2^{\prime}$ follow from the Baire category theorem applied to $K \times K$ (having in mind that $K \times \sigma=\bigcup_{q=1}^{\infty} K \times I^{q}$).
Furthermore, we have
Remark 1. Assume $K \subset Z$ and Z is a countable union of compacta embeddable in $K \times \sigma$. If K satisfies property (1) (resp., property (1^{\prime})), then Z satisfies (2) (resp., (2')); consequently, $Z \times Z$ is not embeddable in Z (resp., there is no f-i map $Z \times Z \rightarrow Z$).

In what follows we will discuss examples that were presented in [D] (see also [BC]).
Example 1. Let C be Cook's continuum, that is, C is hereditarily indecomposable continuum and, for every continuum $A \subset C$, every map $A \rightarrow C$ is either constant or an inclusion. Every compactum of the form

$$
P=\prod_{i=1}^{\infty} A_{i}
$$

where $A_{i} \subset C$ are pairwise disjoint subcontinua, satisfies property (1). Moreover, P (and every open subset of P) is strongly infinitedimensional and contains subsets of all finite dimensions.

Example 2. Let us recall that the Smirnov Cubes $S_{\alpha}, \alpha<\omega_{1}$, are compacta defined as follows $S_{0}=\{0\}, S_{\beta+1}=S_{\beta} \times I$; and, for a limit ordinal $\alpha, S_{\alpha}=\omega\left(\oplus_{\beta<\alpha} S_{\beta}\right)$, the one-point compactification of S_{β}. For, for $\alpha_{0}=\omega^{\omega}$, the space

$$
S=S_{\alpha_{0}}
$$

satisfies (3).
Proof. This follows from the fact that $\operatorname{trind}\left(S_{\alpha_{0}} \times S_{\alpha_{0}}\right)=\alpha_{0}(+) \alpha_{0}$ and $\operatorname{trind}\left(S_{\alpha} \times I^{q}\right) \leq \alpha(+) q$, where trind stands for the small transfinite inductive dimension.

The next example is due to J. Kulesza.
Example 3. The space

$$
T=\omega\left(\left(\oplus_{n \geq 1} I^{n}\right) \oplus H\right),
$$

where H is a hereditary i-d continuum, has property (3^{\prime}).

Proof. Let $f: T \times T \rightarrow T \times I^{q}$ be f-i. Then $f\left(H \times I^{k}\right) \subset H \times I^{q}$ for $k>q$. In particular, I^{k} embeds into $H \times I^{q}$. Since $k>q$ and the projection is closed, there exists a fiber $H \times\{x\} \subset H \times I^{q}$ containing a closed set with $\operatorname{dim}>0$, a contradiction.

Congesting singularities. Write L for either S or T. Pick a nullsequence $\left\{C_{n}\right\}$ of pairwise disjoint Cantor sets in the Cantor set C so that every open nonempty subset of C contains some C_{n}. Let f_{n} : $C_{n} \rightarrow L$, be a surjection. Define \tilde{S} (resp., \tilde{T}) to be the adjoint space with S (resp., T) attached in place of each C_{n} via the map f_{n}.
Fact 2. The compactum \tilde{S} satisfies property (1); moreover, it is countabledimensional and $\operatorname{trind}(\tilde{S}) \leq \operatorname{trind}(S)+1$. The compactum \tilde{T} is not countable dimensional and satisfies property (1^{\prime}).

Proof. This is a consequence of the facts that \tilde{S} (resp., \tilde{T}) is a union of pairwise disjoint copies of S (resp., T) and a subset of irrationals, and that each open subset of \tilde{S} (resp., \tilde{T}) contains a copy of S (resp., T).

2. An application to absorbers

For a compactum K, let $\mathcal{C}=\mathcal{C}(K)$ be the class of compacta embeddable in $K \times \sigma$ (notice that the class \mathcal{C} is [0,1$]$-multiplicative, i.e., for $L \in \mathcal{C}, L \times[0,1] \in \mathcal{C})$. There exists an absorber $\Omega(K)$ for the class \mathcal{C} (see [BRZ] for the definition). We will describe $\Omega(K)$, as done in [D]. Let

$$
\mathcal{E}=\left\{\left(x_{i}\right) \in \ell^{2} \mid \sum_{1}^{\infty} i^{2} x_{i}^{2} \leq 1\right\}
$$

be the i-d convex ellipsoid in ℓ^{2}, a topological copy of Q, and

$$
B=\left\{\left(x_{i}\right) \in \ell^{2} \mid \sum_{i}^{\infty} i^{2} x_{i}^{2}=1\right\} \subset \mathcal{E}
$$

be its pseudoboundary. Embed K into B such that $K \subset B$ is linearly independent and there exists a countable, linearly independent $D \subset$ $B \backslash K$ dense in B. Notice that $\operatorname{span}(D) \cap \mathcal{E}$ is a topological copy of σ (which is also denoted by σ). Define

$$
\Omega(K)=\{t k+(1-t) x \mid k \in K, x \in \sigma, t \in[0,1]\} .
$$

Most absorbers enjoy a regular structure, but absorbers of the form $\Omega(K)$ for nontypical K are themselves nontypical. Since $\Omega(K)$ is a countable union of elements of \mathcal{C}, applying Remark 1, we obtain:

Theorem. For the absorber $\Omega(K)$, we have:
(a) if K satisfies property (1), then $\Omega(K) \times \Omega(K) \neq \Omega(K)$;
(b) if K satisfies property (1'), then there is no f - i of $\Omega(K) \times \Omega(K)$ into $\Omega(K)$; in particular, there is no group or convex structure on $\Omega(K)$.

Corollary. None of the absorbers $\Omega(P), \Omega(\tilde{S})$, and $\Omega(\tilde{T})$ is homeomorphic to its square. They are pairwise nonhomeomorphic. Moreover, $\Omega(P)$ and $\Omega(\tilde{T})$ do not carry a group structure or a convex structure.

Proof. It is enough to show that

$$
\omega(P) \not \approx \omega\left(T^{\prime}\right)
$$

To see this use the facts that: (1) every open subset of P contains a copy of P, (2) P is connected, (3) P contains closed subsets of all finite dimensions. As a consequence, no open subset of P can be embedded into $\tilde{T} \times I^{q}$.

With an extra work (see [D]), we obtain:
Remark 2. For $n<m$,
a) $\Omega(\tilde{S})^{m} \not \approx \Omega(\tilde{S})^{n}$;
b) $\Omega(P)^{m}$ does not admit a f-i map into $\Omega(P)^{n}$.

References

[BC] T. Banakh and R. Cauty, Interplay between strongly universal spaces and pairs, Dissertationes Math., 386 (2000), 1-38.
[BRZ] T. Banakh, T. Radul and M. Zarichnyi, Absorbing Sets in InfiniteDimensional Manifolds, VNTL Publishers, Lviv, 1996.
[D] T. Dobrowolski, The strong universality of certain starlike sets and applications, Topology Proceedings, 25 (2000), 1-25.

Department of Mathematics, Pittsburg State University, Pittsburg, KS 66762 USA

E-mail address: tdobrowo@mail.pittstate.edu

[^0]: 1991 Mathematics Subject Classification. Primary 57N17, 57N20, 46A55, 52A07.
 Key words and phrases. infinite-dimensional compactum, absorber.

