ON CERTAIN I-D COMPACTA

TADEUSZ DOBROWOLSKI

ABSTRACT. Three examples of nontypical i-d compacta are presented. An application to absorbers follows.

1. Nontypical compacta

The typical property, for an i-d compactum K, is that K is homeomorphic to its square, that is,

$$K \cong K \times K.$$

Here are the properties that are stronger than the *negation* of the above:

- (1) No open subset of $K \times K$ can be embedded into $K \times I^q$ for any q (I stands for [-1, 1]).
- (2) $K \times K$ cannot be embedded into $K \times \sigma$; $\sigma = \bigcup_{q=1}^{\infty} I^q \subset Q = I^{\infty}$.
- (3) $K \times K$ cannot be embedded into $K \times I^q$ for any q.
- (4) $K \times K$ cannot be embedded into K.

Definition. A map $K \times K \supset A \rightarrow Z$ is fiberwise injective (f-i) if restricted to every fiber $\{k\} \times K$ or $K \times \{k\}$ it is injective.

Fact 1. If K is carries either a group structure or a convex structure then $K \times K$ admits a f-i map into K. The maps

$$(x,y) \to xy$$

or

$$(x,y) \to \frac{1}{2}(x+y)$$

are easily seen to be f-i.

Here are counterparts of properties (1)-(4):

- (1') No open set U of $K \times K$ admits a f-i map into $Z = K \times I^q$ for any q.
- (2') There is no f-i map $K \times K \to Z = K \times \sigma$.
- (3') There is no f-i map $K \times K \to Z = K \times I^q$ for any q.
- (4') There is no f-i map $K \times K \to K$.

¹⁹⁹¹ Mathematics Subject Classification. Primary 57N17, 57N20, 46A55, 52A07. Key words and phrases. infinite-dimensional compactum, absorber.

For a compactum K, we have the following implications

 $1' \Rightarrow 1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4$

and

 $1' \Rightarrow 2' \Rightarrow 3' \rightarrow 4'$

The implications $1 \Rightarrow 2$ and $1' \Rightarrow 2'$ follow from the Baire category theorem applied to $K \times K$ (having in mind that $K \times \sigma = \bigcup_{q=1}^{\infty} K \times I^q$).

Furthermore, we have

Remark 1. Assume $K \subset Z$ and Z is a countable union of compacta embeddable in $K \times \sigma$. If K satisfies property (1) (resp., property (1')), then Z satisfies (2) (resp., (2')); consequently, $Z \times Z$ is not embeddable in Z (resp., there is no f-i map $Z \times Z \to Z$).

In what follows we will discuss examples that were presented in [D] (see also [BC]).

Example 1. Let C be Cook's continuum, that is, C is hereditarily indecomposable continuum and, for every continuum $A \subset C$, every map $A \to C$ is either constant or an inclusion. Every compactum of the form

$$P = \prod_{i=1}^{\infty} A_i,$$

where $A_i \subset C$ are pairwise disjoint subcontinua, satisfies property (1). Moreover, P (and every open subset of P) is strongly infinitedimensional and contains subsets of all finite dimensions.

Example 2. Let us recall that the Smirnov Cubes S_{α} , $\alpha < \omega_1$, are compacta defined as follows $S_0 = \{0\}$, $S_{\beta+1} = S_{\beta} \times I$; and, for a limit ordinal α , $S_{\alpha} = \omega(\bigoplus_{\beta < \alpha} S_{\beta})$, the one-point compactification of S_{β} . For, for $\alpha_0 = \omega^{\omega}$, the space

$$S = S_{\alpha_0}$$

satisfies (3).

Proof. This follows from the fact that $\operatorname{trind}(S_{\alpha_0} \times S_{\alpha_0}) = \alpha_0(+)\alpha_0$ and $\operatorname{trind}(S_{\alpha} \times I^q) \leq \alpha(+)q$, where trind stands for the small transfinite inductive dimension.

The next example is due to J. Kulesza.

Example 3. The space

$$T = \omega((\oplus_{n>1}I^n) \oplus H),$$

where H is a hereditary i-d continuum, has property (3').

36

Proof. Let $f : T \times T \to T \times I^q$ be f-i. Then $f(H \times I^k) \subset H \times I^q$ for k > q. In particular, I^k embeds into $H \times I^q$. Since k > q and the projection is closed, there exists a fiber $H \times \{x\} \subset H \times I^q$ containing a closed set with dim > 0, a contradiction. \Box

Congesting singularities. Write L for either S or T. Pick a nullsequence $\{C_n\}$ of pairwise disjoint Cantor sets in the Cantor set C so that every open nonempty subset of C contains some C_n . Let $f_n : C_n \to L$, be a surjection. Define \tilde{S} (resp., \tilde{T}) to be the adjoint space with S (resp., T) attached in place of each C_n via the map f_n .

Fact 2. The compactum \tilde{S} satisfies property (1); moreover, it is countabledimensional and trind $(\tilde{S}) \leq \text{trind}(S) + 1$. The compactum \tilde{T} is **not** countable dimensional and satisfies property (1').

Proof. This is a consequence of the facts that \hat{S} (resp., \hat{T}) is a union of pairwise disjoint copies of S (resp., T) and a subset of irrationals, and that each open subset of \tilde{S} (resp., \tilde{T}) contains a copy of S (resp., T). \Box

2. An application to absorbers

For a compactum K, let $\mathcal{C} = \mathcal{C}(K)$ be the class of compacta embeddable in $K \times \sigma$ (notice that the class \mathcal{C} is [0, 1]-multiplicative, i.e., for $L \in \mathcal{C}, L \times [0, 1] \in \mathcal{C}$). There exists an absorber $\Omega(K)$ for the class \mathcal{C} (see [BRZ] for the definition). We will describe $\Omega(K)$, as done in [D]. Let

$$\mathcal{E} = \{ (x_i) \in \ell^2 | \sum_{1}^{\infty} i^2 x_i^2 \le 1 \}$$

be the i-d convex ellipsoid in ℓ^2 , a topological copy of Q, and

$$B = \{(x_i) \in \ell^2 | \sum_{i=1}^{\infty} i^2 x_i^2 = 1\} \subset \mathcal{E}$$

be its pseudoboundary. Embed K into B such that $K \subset B$ is linearly independent and there exists a countable, linearly independent $D \subset B \setminus K$ dense in B. Notice that $\operatorname{span}(D) \cap \mathcal{E}$ is a topological copy of σ (which is also denoted by σ). Define

$$\Omega(K) = \{tk + (1-t)x | k \in K, x \in \sigma, t \in [0,1]\}.$$

Most absorbers enjoy a regular structure, but absorbers of the form $\Omega(K)$ for nontypical K are themselves nontypical. Since $\Omega(K)$ is a countable union of elements of \mathcal{C} , applying Remark 1, we obtain:

Theorem. For the absorber $\Omega(K)$, we have:

(a) if K satisfies property (1), then $\Omega(K) \times \Omega(K) \not\cong \Omega(K)$;

TADEUSZ DOBROWOLSKI

(b) if K satisfies property (1'), then there is no f-i of $\Omega(K) \times \Omega(K)$ into $\Omega(K)$; in particular, there is no group or convex structure on $\Omega(K)$.

Corollary. None of the absorbers $\Omega(P)$, $\Omega(\tilde{S})$, and $\Omega(\tilde{T})$ is homeomorphic to its square. They are pairwise nonhomeomorphic. Moreover, $\Omega(P)$ and $\Omega(\tilde{T})$ do not carry a group structure or a convex structure.

Proof. It is enough to show that

 $\omega(P) \not\cong \omega(T').$

To see this use the facts that: (1) every open subset of P contains a copy of P, (2) P is connected, (3) P contains closed subsets of all finite dimensions. As a consequence, no open subset of P can be embedded into $\tilde{T} \times I^q$.

With an extra work (see [D]), we obtain:

Remark 2. For n < m, a) $\Omega(\tilde{S})^m \not\cong \Omega(\tilde{S})^n$; b) $\Omega(P)^m$ does not admit a f-i map into $\Omega(P)^n$.

References

- [BC] T. Banakh and R. Cauty, Interplay between strongly universal spaces and pairs, Dissertationes Math., 386 (2000), 1–38.
- [BRZ] T. Banakh, T. Radul and M. Zarichnyi, Absorbing Sets in Infinite-Dimensional Manifolds, VNTL Publishers, Lviv, 1996.
- [D] T. Dobrowolski, The strong universality of certain starlike sets and applications, Topology Proceedings, 25 (2000), 1–25.

Department of Mathematics, Pittsburg State University, Pittsburg, KS $\,66762$ USA

E-mail address: tdobrowo@mail.pittstate.edu

38