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Dedicated to Bob Daverman on the occasion of his 60th birthday.

These survey lectures are devoted to a new subject of the large scale
dimension theory which was initiated by Gromov as a part of asymp-
totic geometry. We are going to enter the large scale world and consider
some new concepts, results and examples which are parallel in many
cases to the corresponding elements of the standard (local) dimension
theory. We start our presentation with the motivations.

Lecture 1. MOTIVATONS and CONCEPTS

1.1. Big picture of the Novikov Conjecture. The Novikov Conjec-
ture (NC) states that the higher signatures of a manifold are homotopy
invariant. The higher signatures are the rational numbers of the type
〈L(M)∪ρ∗M(x), [M ]〉, where [M ] is the fundamental class of a manifold
M , L is the Hirzebruch class, Γ = π1(M), ρM : M → BΓ = K(Γ, 1)
is a map classifying the universal cover of M and x ∈ H∗(BΓ; Q) is a
rational cohomology class. The name ‘higher signature’ is due to the
Hirzebruch signature formula σ(M) = 〈L(M), [M ]〉. It is known that
the higher signatures are the only possible homotopy invariant char-
acteristic numbers. It is convenient to formulate the NC for groups
Γ instead of manifolds. We say that the Novikov Conjecture holds for
a discrete group Γ if it holds for all manifolds M (closed, orientable)
with the fundamental group π1(M) = Γ. One of the reason for this is
that the conjecture is verified for many large classes of groups. The
other reason is that the Novikov Conjecture for the group can be re-
formulated in terms of the surgery exact sequence: The rational Wall
assembly map

lΓ∗ : H∗(BΓ; Q) → L∗(π)⊗Q
is a monomorphism [Wa], [FRR],[KM].
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The case when BΓ is a finite complex is of a particular interest
here. In this case the group Γ taken as a metric space in the word
metric is coarsely equivalent to the universal cover EΓ. This makes
the methods of asymptotic geometry more natural. According to Davis’
trick every finite aspherical complex K is a retract of a closed aspherical
orientable manifold M [D]. Then the diagram formed by the surgery
exact sequence and this retraction implies that if the NC holds for
π1(M), then it holds for π1(K). Having that in mind from this moment
we will stick to the case when BΓ = M is a closed orientable manifold.
Since M is aspherical, without loss of generality we may assume that
the universal cover X of M is homeomorphic to a euclidean space.

There are several famous conjectures about aspherical manifolds. We
arrange them in the following picture.

GC WC cNC cBCC aNC

BC

equi equi

NC

BCC

GLC

Here we assume that Γ is fixed and BΓ = M is a closed manifold of
dimension n. We note that almost all these conjectures are stated in
more general form. With the above restriction they form this picture
where every arrow is a theorem.

Below we give a brief description of the conjectures.

Borel Conjecture (BC). Every homotopy equivalence between closed
aspherical manifolds is homotopic to a homeomorphism.

The arrow BC → NC follows from the surgery exact sequence [FRR].

Gromov-Lawson Conjecture (GLC). A closed aspherical manifold
cannot carry a metric of positive scalar curvature.

The scalar curvature of an n-dimensional Riemannian manifold M
at a point x can be defined up to a constant multiple as

lim
r→0

V ol Br(Rn, 0)− V ol Br(M, x)

rn+2
,

where Br(X, x) denotes the r-ball in a metric space X centered at x.
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Analytic Novikov Conjecture (aNC). The analytic assembly map
µ : K∗(BΓ) → K∗(C

∗
r (Γ)) is a monomorphism.

Here C∗
r (Γ) is the reduced C∗-algebra of a group Γ, i.e. the comple-

tion of the group ring CΓ in the space of bounded linear operators on
the Hilbert space l2(Γ) of complex square summable functions on Γ.
Proofs of arrows from aNC can be found in [Ros],[FRR],[Con],[Ro2].
We note that the original version of aNC (due to Mischenko and Kas-
parov) was slightly weaker and it used the maximal C∗-algebra C∗

m(Γ)
of the group Γ.

Baum-Connes Conjecture (BCC). The analytic assembly map µ
is an isomorphism.

Coarse Baum-Connes Conjecture (cBCC). The coarse index map
µ : K lf

∗ (X) → K∗(C
∗(X)) is an isomorphism, where X = EΓ and

C∗(X) is the Roe algebra [Ro2].

The connection of cBCC with BCC is based on the facts that the
K-theory homology group K∗(BΓ) is a Γ-equivariant K-homology of
X and the reduced C∗-algebra of Γ is Morita equivalent to the algebra
C∗(X)Γ of fixed elements of C∗(X) under the action of Γ. The arrow
cBCC → cNC is trivial. The arrow cBCC → aNC can be found in
[Ro2].

Coarse Novikov Conjecture (cNC). The coarse index map µ is a
monomorphism.

The arrow cNC → GLC is proven in [Ro1]. Here we consider a coarse
analog of the analytic Novikov conjecture. For the L-theoretic coarse
Novikov conjecture we refer to [DFW1] and [J].

Equivariant cNC. The coarse index map µ is a Γ-equivariant split
monomorphism.

A proof of the arrow equi-cNC → NC is contained in [Ro2]. We give
more attention to the following two conjectures.

Weinberger Conjecture (WC). Let X̄ = X∪νX be the Higson com-
pactification of X. Then the boundary homomorphism δ : Ȟn−1(νX) →
Hn

c (X) = Z in the exact sequence of the pair (X̄, νX) is an epimor-
phism.

We recall that for a smooth manifold X the Higson compactification
X can be defined as the closure of the image of X under the diagonal
embedding Φ : X → ICh(X) into the Tychonov cube defined by means
of all smooth functions φ : X → I = [0, 1] whose gradient tends to 0
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as x goes to infinity. The set of all such φ is denoted by Ch(X). the
remainder νX = X r X of the Higson compactification is called the
Higson corona. The arrow WC → cNC was established in [Ro1]. The
Weinberger Conjecture has the rational version (when coefficients are
rational). The rational WC implies the Gromov Conjecture (actually
after a stabilization when n is odd) [Ro1], [DF] and hence the Gromov-
Lawson conjecture. There is an equivariant version of WC which states
that δ is Γ-equivariant split epimorphism for cohomology L-theory.
Weinberger noted that the rational equivariant WC implies NC [DF].

Gromov Conjecture (GC). The manifold X = EΓ is hypereuclidean.

Gromov called this a ‘problem’ rather than a ‘conjecture’. We use
here GC instead of GP to make the picture more homogeneous. We
recall that an n-dimensional manifold X is called hypereuclidean if it
admits a proper 1-Lipschitz map p : X → Rn of degree one. A manifold
X is called rationally hypereuclidean if there exists a map p as above
with deg(p) 6= 0. The arrow rational GC → GLC was proved in [GL],
[G3]. The arrow GC → WC was proved by Roe [Ro1].

We note that the stable version of GC implies the Gromov-Lawson
Conjecture as well. Also in [G3] there was an announcement of the im-
plication (stable) GC → NC. Previously it was known that the equivari-
ant version of GC implies the Novikov Conjecture [CGM]. The equivari-
ant version of GC states that X = EΓ is equivariantly hypereuclidean.
the latter means that there is a equivariant map p : X ×X → Rn ×X
which is 1-Lipschitz and essential on every fiber. The main example
here is the universal cover of a closed manifold of nonpositive curva-
ture. Then the map p is defined by the formula p(x, y) = lny(x) where
lnx : X → Tx is the inverse of the exponential map at x ∈ X.

Example. All conjectures hold true when Γ = Zn. Then BΓ is the
n-dimensional torus and X = Rn. Even in this toy case some of the
above conjectures are not obvious.

We conclude the motivation part by a theorem of G. Yu [Yu1] (see
also [Yu2], [HR2], [H], and [STY]).

Theorem 1.1. If the asymptotic dimension asdim Γ of a finitely pre-
sented group Γ taken as a metric space with the word metric is finite,
then the cBCC, and hence the NC, holds for Γ.

This theorem was extended to cover the integral versions of the L-
and K-theoretic Novikov conjectures in [CG], [CFY], [Ba], [DFW2].

1.2. Coarse category and coarse structures. The coarse category
was defined by Roe in [Ro1]. He starts with the category whose objects
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are proper metric spaces. The morphisms are coarsely uniform, metric
proper maps. Here are the definitions. A metric space X is called
proper if every closed ball Br(x) in X is compact. We recall that a
map f : X → Y is called proper if the preimage f−1(C) is compact
for every compact set C. Then a metric space X is proper if and
only if the distance to any fixed point is a proper function on X. A
map f : X → Y is called metric proper if the preimage f−1(C) is
bounded for every bounded set C ⊂ Y . A map f : X → Y is coarsely
uniform if there is a tending to infinity function ρ : R+ → R+ such
that dY (f(x), f(x′)) ≤ ρ(dX(x, x′)) for all x, x′ ∈ X. We consider the
following equivalence relation on morphisms. Two maps f, g : X → Y
are coarsely equivalent (bornotopic in terminology of [Ro1]) if there
is a constant D such that dY (f(x), g(x)) < D for all x. The coarse
category is the quotient of the above category under this equivalence
relation on the morphisms. Two metric spaces X and Y are coarsely
equivalent if there are two morphisms f : X → Y and g : Y → X such
that g ◦ f is coarsely equivalent to 1X and f ◦ g is coarsely equivalent
to 1Y .

Example. Z is coarsely equivalent to R with the metric d(x, y) =
|x− y|.

More generally, if BΓ is a finite complex, then Γ is coarsely equivalent
to EΓ. Here the metric on EΓ is lifted from one on BΓ and the
group Γ is equipped with the word metric with respect to a finite
set of generators. We recall that if S = S−1 is a finite symmetric
set of generators of a group Γ then the word metric dS is defined as
dS(x, y) = ‖x−1y‖S, where the S-norm ‖a‖S of an element a ∈ Γ is the
shortest length of presentation of a in the alphabet S. We note that
if S ′ is another finite symmetric generating set of Γ, then the metric
spaces (Γ, dS) and (Γ, dS′) are coarsely equivalent.

We call a metric space X ε-discrete if dX(x, x′) ≥ ε for all x, x′ ∈ X,
x 6= x′. We call it discrete if it is ε-discrete for some ε.

Proposition 1.2. Every metric space X is coarsely equivalent to a
discrete metric space.

Proof. By transfinite induction one can construct a 1-discrete subset
S ⊂ X with the property dX(x, S) ≤ 1 for all x ∈ X. The inclusion
S ⊂ X is a coarse equivalence whose inverse is any map g : X → S
with the property d(x, g(x)) ≤ d(x, S) + 1. �

We are going to study a coarse invariant dimension on metric spaces.
Before giving the definitions we will sketch an approach to an extension
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of the coarse category beyond the metric spaces which is due to Higson
and Roe [HR].

A set X is given a coarse structure if for every set S there is a
fixed equivalence relation on the set of maps XS called being close and
satisfying the following axioms:

(1) If p1, p2 : S → X are close, then p1 ◦ q and p2 ◦ q are close for
every q : S ′ → S;

(2) If p1, p2 : S → X are close and q1, q2 : S ′ → X are close, then
p1

∐
q1 and p2

∐
q2 are close maps of S

∐
S ′ to X;

(3) any two constant maps are close.

A subset C ⊂ X is called bounded (with respect to the coarse struc-
ture on X) if the inclusion map i : C → X is close to a constant map.
A map f : X → Y between two coarse spaces is called coarse proper
if the preimage of every bounded set is bounded. Then morphisms be-
tween coarse spaces are coarse proper maps f : X → Y satisfying the
condition:

p1, p2 : S → X are close ⇒ f ◦ p1, f ◦ p2 : S → Y are close.

Examples. (1) When X is a metric space one sets for being close the
property to be in a finite distance.

(2) If a locally compact topological space X is embedded in its
compactification X̄, one can define two maps p1, p2 : S → X to be
close if for every subset S ′ ⊂ S the corresponding limit sets coincide:
p1(S ′) r X = p2(S ′) r X.

We denote by Rn
r the coarse structure on Rn defined by the radial

compactification.
In parallel with the bounded and continuous control in controlled

topology [FP], the coarse structure on X defined in (1) is called bounded
and the coarse structure defined in (2) is called continuous.

Proposition 1.3. The bounded coarse structure on a proper metric
space X coincides with the continuous coarse structure generated by
the Higson compactification.

The proof can be easily derived from the following description of
the Higson compactification. According to Smirnov’s theorem every
compactification on X is defined by some proximity (and vice versa).
The Higson corona of X is defined by the proximity δX given by the
condition Aδ̄XB if and only if limr→∞ dX(ArBr(x0), BrBr(x0)) = ∞.
It means that the closures of diverging sets in X (and only them) do
not intersect in the Higson corona.
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Lecture 2. THEOREMS

2.1. Definitions. There are several equivalent definitions of dimension
of compact metric spaces. The equivalence of corresponding coarse
analogs for proper metric spaces in some cases is still an open question.

We recall the terminology. Let U denote an open cover of a met-
ric space X. Then ord(U) is the order of the cover, i.e. the max-
imal number of elements of U having nonempty intersection. The
mesh of a cover U , mesh(U), is the maximal diameter of the ele-
ments of U . The Lebesgue number of a cover U is defined as L(U) =
infy∈Y supU∈U d(y, Y r U). A family U of subsets of X is called uni-
formly bounded if there is an upper bound on the diameter of its ele-
ments.

We consider the following comparison table:

Dimension dim X ≤ n Asymptotic dimension asdim X ≤ n

(1) ∀ V, open cover of X, ∃ U , an
open cover of X, with ord(U) ≤
n + 1 and U ≺ V .

(1) ∀ V , uniformly bounded cover of X,
∃ U , a uniformly bounded cover of X,
with ord(U) ≤ n + 1 and V ≺ U .

(2) ∀ ε > 0 ∃ U0, . . . ,Un, dis-
joint families of sets in X with
mesh(U i) < ε such that ∪iU i is
a cover of X.

(2) ∀ λ ∃ uniformly bounded λ-disjoint
families U0, . . . ,Un such that ∪iU i is a
cover of X.

(3) ∀ ε > 0 ∃ an ε-map f : X →
K to an n-dimensional polyhe-
dron K.

(3) ∀ λ ∃ uniformly cobounded 1-
Lipschitz map f : X → K to a uni-
form polyhedron K with dim K = n and
mesh(K) = λ.

(4) X admits a Čech approxima-
tion by n-dimensional polyhedra.

(4) X admits an anti-Čech approxima-
tion by n-dimensional polyhedra.

(5) ∀ f : A → Sn, A ⊂Cl X, ∃ an
extension f̄ : X → Sn.

(5) ∀ f : A → Rn+1
r , A ⊂Cl X, ∃ an

extension f̄ : X → Rn+1
r .

(6) Ind X ≤ n (6) asInd X ≤ n.

In the column on the left we have equivalent definitions of dimension
for compact metric spaces. In the right column there are asymptotic
counterparts. It is likely that they all are equivalent for metric spaces
with bounded geometry.
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We still owe some definitions for the asymptotic part of this ta-
ble. A map f : X → Y between metric spaces is called uniformly
cobounded if for every R > 0 the diameter of the preimage f−1(BR(y))
is uniformly bounded from above. A Čech approximation of a compact
metric space X is a sequence of finite covers {Un} such that, Un+1 is
a refinement of Un for all n, and limn→∞mesh(Un) = 0. An anti-Čech
approximation [Ro1] of a metric space X is a sequence of uniformly
bounded locally finite covers Un such that Un is a refinement of Un+1,
and limn→∞ L(Un) = ∞. In both cases the approximation of metric
space X is given by polyhedra which are nerves of corresponding cov-
ers. We say that a simplicial complex K is given a uniform metric
of mesh(K) = λ, if it is realized as a subcomplex in the standard
λ-simplex ∆λ in the Hilbert space l2

∆λ = {(xi) |
∑

xi = λ, xi ≥ 0}

and it’s metric is induced from l2.
In condition (5), Rn+1

r stands for the continuous coarse structure
on Rn+1 defined by the radial compactification. Since every coarse
morphism f : A → Rn+1

r defines a continuous map between coronas
f : νA → Sn and vice versa, the asymptotic condition (5) (in view of
the classical condition (5)) can be reformulated as follows:

(5′) dim νX ≤ n.

We note that the dimension dim of a nonmetrizible compact space
can be defined by the condition (5).

Finally we recall the definition of inductive dimensions. A closed
subset C of a topological space X is called a separator between disjoint
subsets A, B ⊂ X if X r C = U ∪ V , where U, V are open subsets in
X, U ∩ V = ∅, A ⊂ U , V ⊂ B. We set Ind ∅ = −1. Then Ind X ≤ n if
for every two disjoint closed sets A, B ⊂ X there is a separator C with
Ind C ≤ n− 1 [En].

It is known that the Higson corona is a functor from the category
of proper metric spaces and coarse maps into the category of compact
Hausdorff spaces and continuous maps. In particular, if X ⊂ Y , then
νX ⊂ νY . For any subset A of X we denote by A′ its trace on νX, i. e.
the intersection of the closure of A in X̄ with νX. Obviously, the set A′

coincides with the Higson corona νA. Let X be a proper metric space.
Two sets A, B in a metric space are called asymptotically disjoint if
the traces A′, B′ on νX are disjoint. A subset C of a metric space
X is an asymptotic separator between asymptotically disjoint subsets
A, B ⊂ X if the trace C ′ is a separator in νX between A′ and B′. By
the definition, asInd X = −1 if and only if X is bounded. Suppose
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we have defined the class of all proper metric spaces Y with asInd Y ≤
n−1. Then asInd X ≤ n if and only if for every asymptotically disjoint
subsets A, B ⊂ X there exists an asymptotic separator C between A
and B with Ind C ≤ n−1. The dimension functions asInd is called the
asymptotic inductive dimension .

As it was mentioned, all conditions (1)–(6) in the left column are
equivalent for compact metric spaces [HW],[En]. The condition (1)
is Lebesgue’s definition of dimension. The equivalence (1) ⇔ (2) is
a theorem of Ostrand. The equivalence of the conditions (3) and (5)
to the inequality dim X ≤ n is due to Alexandroff. The equivalence
dim X ≤ n ⇔ (4) is called the Froudenthal theorem.

In the column on the right Gromov proved the equivalence of con-
ditions (1),(2),(3) and (4) [Gr1] (see [BD2] for details). These condi-
tions give a definition of the asymptotic dimension asdim. In [Dr1]
it was shown that the condition (5′) is equivalent to the inequality
asdim X ≤ n provided asdim X < ∞. Under the same condition the
equality asInd X = asdim X was proven in [Dr7], [DZ]. Here we exclude
the case of bounded X. We note that there are implications (1) ⇒ (5′)
[DKU], (1) ⇒ (6) [DZ]. The status of the remaining implications is
unknown.

Examples.
(1) asdim Z = 1;
(2) asdim Rn = n [DKU];
(3) asdim T = 1 where T is a tree (with the natural metric).

We note that all asymptotic conditions (1)–(6) are coarse invariant.
All of them can be stated in the setting of general coarse structures.
To do that one needs a notion of a uniformly bounded family of sets
in a general coarse space. A family U in a coarse space X is uniformly
bounded if the maps p1, p2 : S → X are close, where S = ∪U∈UU ×U ⊂
X ×X and p1, p2 : X ×X → X are the projections onto the first and
the second factors respectively.

2.2. Embedding Theorems and Applications. A coarse morphism
f : X → Y is a coarse embedding if there the inverse morphism defined
for f : X → f(X), i.e. a morphism g : f(X) → X such that g ◦ f and
1X are close in X and f ◦ g and 1f(X) are close in f(X) with respect
to the induced coarse structure. If a coarse morphism f is injective in
the set theoretic sense, then it is a coarse embedding if and only f−1 is
a coarse morphism. In our metric setting a map f : X → Y is a coarse
embedding if there are tending to infinity functions ρ1, ρ2 : R+ → R+



12 A. N. DRANISHNIKOV

such that

ρ1(dX(x, x′)) ≤ dY (f(x), f(x′)) ≤ ρ2(dX(x, x′)).

We recall that a metric space (X, dX) is called geodesic if for every
pair of its points x and y there is an isometric embedding of the in-
terval [0, d(x, y)] into X with the end points x and y. Clearly for a
geodesic metric space X the function ρ2 can be taken linear. Thus,
up to a rescaling, a coarse embedding of a geodesic metric space is an
1-Lipschitz map.

The question about embeddings into nicer spaces in the coarse cat-
egory is very important for applications. In [Yu2] Goulang Yu proved
the Novikov Conjecture for groups Γ that admit a coarse imbedding in
the Hilbert space (see aloso [H] and [STY]). It was noticed in [HR2] that
a metric space with finite asymptotic dimension is coarsely imbeddable
in l2. Thus this theorem of Yu implies his Theorem 1.1.

In a geometric approach to Theorem 1.1 the need for a coarse analog
of the classical Nobeling-Pontryagin embedding theorem arose. We re-
call that the classical Nobeling-Pontryagin embedding theorem states
that every compactum X of dimension dim X ≤ n can be embedded
in R2n+1. It is easy to see that this statement does not have a di-
rect asymptotic analog. Indeed, a binary tree being asymptotically
1-dimensional cannot be coarsely embedded in RN for any N because
the tree has an exponential volume growth function and a euclidean
space has only the polynomial volume growth. Moreover, we show
in [DZ] that there is no metric space of bounded geometry that con-
tains in a coarse sense all asymptotically n-dimensional metric spaces
of bounded geometry. Here the bounded geometry condition serves as
an asymptotic analog of compactness.

We recall that the ε-capacity cε(W ) of a subset W ⊂ X of a metric
space X is the maximal cardinality of ε-discrete set in W . A metric
space X has bounded geometry if there are ε > 0 and a function c :
R+ → R+ such that cε(Br(x)) ≤ c(r) for all x ∈ X. Finitely generated
groups give us one of the main sources of examples of metric spaces of
bounded geometry.

Neveretheless in asymptotic topology there is an embedding theorem
which turnes out to be sufficient for the purpose of Theorem 1.1.

Theorem 2.1 ([Dr4]). Every metric space of bounded geometry X with
asdim X ≤ n can be coarsely embedded in a 2n+2-dimensional manifold
of nonpositive curvature.

The proof is based on the following embedding theorem.
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Theorem 2.2 ([Dr4]). Every metric space of bounded geometry X with
asdim X ≤ n can be coarsely embedded in the product of n + 1 locally
finite trees.

In the classical dimension theory there is a theorem [Bow] analogous
to Theorem 2.2 which states that an n-dimensional compact metric
space can be imbedded in the product of n+1 dendrits (= 1-dimensional
AR).

We recall that in the classical dimension theory for every n there
is the universal Menger compactum µn which is n-dimensional and
contains a copy of every n-dimensional compactum. As we mentioned,
there is no similar object in the coarse category for n > 0 [DZ]. Using
an embedding X →

∏
Ti into the product of trees as in Theorem 2.2 we

built a coarse analog of the Menger space M({Ti}), asdim M({Ti}) = n,
out of this product and get an embedding of X into M({Ti}). This
construction leads to the universal space for asdim ≤ n but we lose the
bounded geometry condition.

For n = 0 a universal object with bounded geometry does exist. It is
a literal generalization of the Cantor set: M0 is the subset of all reals
that do not use 2 in their ternary expansion. The classical Cantor set
is M0 ∩ [0, 1].

We proved a stable version of the Gromov Conjecture (see §1) for a
group Γ with asdim Γ < ∞.

Theorem 2.3 ([Dr2]). Let M be a closed aspherical manifold with
asdim π1(M) < ∞ and let X be its universal cover. Then the manifold
X × Rm is hypereuclidean for some m.

A weaker theorem states that X × Rm is integrally hyperspherical
[Dr4]. This theorem enables us to prove the GLC. There is a relatively
short proof of this which is based on the Theorem 2.1. We recall that
an n-dimensional manifold Y is integrally hyperspherical [GL] if for
arbitrary large r there is an n-submanifold with boundary Vr ⊂ Y
and an 1-Lipschitz degree one map pr : (Vr, ∂Vr) → (Br(0), ∂Br(0)) to
the euclidean ball of radius r. If X is embedded in a k-dimensional
nonpositively curved manifold W k, the R-sphere SR(x0) in X for large
enough R is linked with a manifold M which has a sufficiently large
tubular neighborhood N in W k also linked with SR(x0) and with an 1-
Lipschitz trivialization π : N → Br(0). Then we take a general position
intersection X∩N as Vr and the restriction π|Vr as pr. Crossing with Rm

helps to achieve the above properties of the tubular neighborhood N .

When Gromov defined the asymptotic dimension [G1] he already sug-
gested to consider the asymptotic behavior of some natural functions
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that appeared in the definition as legitimate asymptotic invariants of
dimension type. Here we consider one of such functions defined as

asdX(λ) = min{ord(U)| L(U) ≥ λ} − 1,

where U is a uniformly bounded cover of X. We note that taking the
limit gives the equality:

lim
λ→∞

asdX(λ) = asdim X.

So we will refer to the function asdX(λ) as to the asymptotic dimension
of X in the case when asdim X = ∞. Clearly, for a space of bounded
geometry the function asdX(λ) is at most exponential. The following
is a generalization of the theorem of Yu (Theorem 1.1).

Theorem 2.4 ([Dr5], [Dr8]). If asdΓ(λ) has the polynomial growth,
then the Novikov Conjecture holds for Γ.

This theorem holds for all finitely presented groups Γ. In contrast
with Theorem 2.3, the proof here relies heavily on the results of [Yu2],
[STY], and [H].

2.3. Finite dimensionality theorems. Finite dimensionality results
for groups are important for the application to the Novikov Conjecture.
The first finite dimensionality result in the asymptotic dimension the-
ory is due to Gromov who proved that asdim Γ < ∞ for hyperbolic
groups [Gr1], [Ro3]. Then we proved in [DJ] that asdim Γ < ∞ for all
Coxeter groups. In [BD1] we proved that the asymptotic finite dimen-
sionality is preserved by the amalgamated product and by the HNN
extension. We gave a general estimate.

Theorem 2.5 ([BD2]). Suppose that Γ is the fundamental group of a
finite graph of groups with all vertex groups Gv having asdim Gv ≤ n.
Then asdim Γ ≤ n + 1.

A graph of groups is a graph in which every vertex v and every
edge e have assigned group Gv and Ge such that for the endpoints e±

of e there are fixed monomorphisms φe± : Ge → Ge± . The fundamental
group of a graph of groups can be viewed as the fundamental group
of a complex built out of the mapping cylinders of the maps between
Eilenberg-Maclane complexes fe± : K(Ge, 1) → K(Ge± , 1) defined by
the homomorphisms φe± . Clearly, this is a generalization of the amalga-
mated product and the HNN extension which correspond to the graphs
with one edge.

By Bass-Serre theory the fundamental groups of graphs of groups
are exactly the groups acting on trees (without inversion). We used
this action to obtain our estimate. We proved the following theorem.
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Theorem 2.6 ([BD2]). Suppose that a group Γ acts by isometries on
a metric space X with asdim X ≤ k in such a way that for every r,
the r-stabilizer Wr(x0) of a fixed point x0 ∈ X has asdim Wr(x0) ≤ n.
Then asdim Γ ≤ n + k.

We define the r-stabilizer Wr(x0) as the set

{g ∈ Γ| dX(g(x0), x0) ≤ r}.
Thus, to prove Theorem 2.5 it suffices to show that asdim Wr(x0) ≤ n

for the Serre action of the group Γ on a tree. It is not an easy task by
any means even in the simplest case of the free product of groups. the
difficulties were overcome by further development of the asymptotic
dimension theory. We proved the following union theorem.

Theorem 2.7 ([BD1]).

(1) Suppose X = A ∪ B is a metric space. Then asdim X ≤
max{asdim A, asdim B};

(2) Suppose X = ∪iAi is a metric space and let asdim Ai ≤ n for
all i. Then asdim X ≤ n provided the following condition is
satisfied: ∀r ∃ Yr ⊂ X with asdim Yr ≤ n such that the family
of sets {Ai r Yr} is r-disjoint.

We note that these union theorems differ from their classical analogs.
Using the asymptotic inductive dimension asInd we managed to get

an exact formula in the case of the nondegenerate amalgamated prod-
uct.

Theorem 2.8 ([BDK]). There is a formula

asdimA ∗B = max{asdimA, asdimB, 1}
for finitely generated groups A and B.

For the amalgamated product, the best what we have is the inequal-
ity [BD3]

asdimA ∗C B ≤ max{asdimA/C, asdimB/C, asdimC + 1}.

Lecture 3. COUNTEREXAMPLES

3.1. Coarse Alexandroff Problem. We recall that the classical Alexan-
droff problem was about coincidence of the integral cohomological di-
mension of a compact metric space with its dimension. Since the 1930s
the problem was reduced to the question whether there is an infinite
dimensional compactum with a finite cohomological dimension. The
problem was solved negatively [Dr6]. We recall that the cohomolog-
ical dimension of X is defined in terms of Čech cohomology as the
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maximal number n such that the relative cohomology group is non-
trivial, Ȟ(X, A; Z) 6= 0, for some closed subset A ⊂ X. The Čech
cohomology is defined by means of a Čech approximation of a com-
pactum X (or of a pair (X, A)) and the ordinary (simplicial) cohomol-
ogy. Similarly one can define the anti-Čech homology called coarse
homology of a metric space (or pair) [Ro2], [Dr1] by means of an
anti-vCech approximation of a metric space X (or of a pair (X,A))
and the simplicial homology with infinite chains. Roe denoted the
coarse homology as HX∗ [Ro1]. Then using the coarse homology one
can define an asymptotic homological dimension in a similar fashion:
asdimZ X = max{n|HXn(X, A) 6= 0, A ⊂Cl X}. The homology is
more preferable here than the cohomology since the latter involves the
lim1 term. By analogy we can pose the coarse version of Alexandroff
problem:

Coarse Alexandroff Problem. Does there exist an asymptotically
infinite dimensional metric space with a finite asymptotic homological
dimension?

In view of Yu’s theorem (Theorem 1.1), it is not difficult to show (see
[Dr1]) that the negative answer to this problem implies the Novikov
Conjecture for the groups Γ with BΓ a finite complex.

The following was the first counterexample to the coarse Alexandroff
Problem, though it appeared as a counterexample to a general version
of the Gromov Conjecture (GC) as well as to a preliminary version of
the coarse Baum-Connes conjecture [Ro1].

Counterexample 3.1 ([DFW1]). There exists a uniformly contractible
Riemannian metric on R8 which gives a metric space X with asdim X =
∞ and with the asymptotic homological dimension equal to 8.

In our paper we proved that X is not stably hypereuclidean. This
already implies that asdim X = ∞. Higson and Roe proved [HR1] that
for uniformly contractible spaces the coarse homology coincides with
the locally finite homology. This gives us the required estimate for
asymptotic homological dimension.

We recall that a metric space X is uniformly contractible if there
is a function ρ : R+ → R+ such that every r-ball Br(x) in X can be
contracted to a point in Bρ(r)(x). We note that the universal cover
of a closed aspherical manifold is always uniformly contractible. This
let Gromov to pose his conjecture GC for all uniformly contractible
manifolds [G2]. The counterexample 3.1 disproves GC in the general
setting but not the rational GC. The construction of it is based on a
(dimension raising) cell-like map of a 7-dimensional sphere which has
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non-zero kernel in the homology K-theory. Since rationally a cell-like
map is always an isomorphism, our approach did not touch the rational
GC.

The drawback of this counterexample is that X is not a EΓ and
moreover X does not have bounded geometry.

Recently Gromov came with a better example.

Counterexample 3.2 ([G5]). There is a closed aspherical manifold
M with asdim π1(M) = ∞.

We note that the universal cover X of M , as well as the fundamen-
tal group π1(M), has the asymptotic homological dimension asdimZ X
equal to the dimension of M (=4 in the most recent version). Gromov’s
construction is based on use of expander. He constructed his manifold
M with π1(M) containing an expander in a coarse sense. Then the
equality asdim π1(M) = ∞ follow (see the next section).

3.2. Expanders. Let (V, E) be a finite graph with the vertex set V
and the edge set E. We denote the cardinalities |V | and ‖E‖ by n and
m. Let l2(V ) and l2(E) denote complex vector spaces generated by V
and E. We view an element of l2(V ) as a function f : V → C. We
fix an orientation on E and define the differential d : l2(V ) → l2(E)
as (df)(e) = f(e+) − f(e−). The operator d is represented by m × n
matrix D. We define the Laplace operator ∆ = D∗D where D∗ is the
transpose of D. It is an easy exercise to show that ∆ does not depend
on orientation on E. By the definition the operator ∆ is self-adjoint.
Also it is positive: 〈∆f, f〉 = 〈Df, Df〉 ≥ 0. Therefore ∆ has real
nonnegative eigenvalues. We denote by λ1(V ) the minimal positive
eigenvalue of the laplacian on the graph V .

Definition. A sequence of graphs (Vn, En) of a fixed valency d and with
|Vn| → ∞ is called an expander (or expanding sequence of graphs) if
there a positive constant c such that λ1(Vn) ≥ c for all n.

The last condition on the graphs is equivalent to the following [Lu]:
there is a constant c0 > 0 such that |∂A| ≥ c0|A| for all subsets A ⊂ Vn

with |A| ≤ |Vn|/2.
Here the boundary of A in a graph V is defined as

∂A = {x ∈ V | dist(x, A) = 1}.

It is easy to prove that the solutions of the Laplace equation ∆f = 0
are exactly constant functions. The orthogonal space to the constants
we denote by l02(V ) = {f |

∑
v∈V f(v) = 0}. We consider the restriction
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∆ to l02(V ). Let {vi} be a orthonormal basis of eigenvectors in l02(V )
and let f =

∑
αivi. Then

〈∆f, f〉
〈f, f〉

=
〈
∑

λiαivi,
∑

αivi〉
〈
∑

αivi,
∑

αivi〉
=

∑
λiα

2
i∑

α2
i

≥
∑

λ1α
2
i∑

α2
i

= λ1.

We apply the above inequality to a real-valued function f : V → R,
f ∈ l02(V ) to obtain the following inequality:

λ1 ≤
〈∆f, f〉
〈f, f〉

=
〈df, df〉
〈f, f〉

=

∑
E |f(e+)− f(e−)|2∑

V |f(x)|2
.

We rearrange this inequality into the inequality λ1

∑
V |f(x)|2 ≤

∑
E |f(e+)−

f(e−)|2. Clearly this inequality holds for any function f : V → l2 to a
Hilbert space such that

∑
V f(v) = 0:

λ1

∑
V

‖f(x)‖2 ≤
∑

E

‖f(x)− f(y)‖2.

Since m = |E| = dn/2, we can change the above inequality into the
following

λ1
1

|V |
∑
V

‖f(x)‖2 ≤ d

2|E|
∑
E

‖f(x)− f(y)‖2.

On the right we have d/2 times average of squares of lengths of the
images under f of edges in the graph. Applying this inequality to an
1-Lipschitz map and using the estimate λ≥c we obtain the following.

Proposition 3.3. Let fn : Vn → l2 be a sequence of 1-Lipschitz maps
of an expander to a Hilbert space. Then

1

|V |
∑
V

‖fn(x)‖2 ≤ d

2c

for all n.

Corollary 3.4. If K >
√

d/c, then for maps fn : Vn → l2 as above
there is the inequality |{x ∈ Vn | ‖fn(x)‖ ≤ K}| > |Vn|/2 for all n.

Proof. Assume the contrary. Then we have a contradiction

d

2c
≥ 1

|V |
∑
V

‖fn(x)‖2 ≥ 1

|V |
K2 |V |

2
>

d

2c
.

�

Nice groups cannot contain (in the coarse sense) an expander. We
proved the following
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Theorem 3.5 ([Dr3]). Suppose that the universal cover X of a closed
aspherical manifold is equivarinatly hypereuclidean, then X does not
contain an expander.

Corollary 3.6. Gromov’s example (Counterexample 3.2) is a coun-
terexample to the equivariant Gromov Conjecture (equi-GC) and to the
equivariant Weinberger Conjecture (equi-WC).

Here we give a proof of a weaker statement which is due to Gromov
and Higson. Namely we show that

A contractible Riemannian manifold with a nonpositive sectional cur-
vature does not contain an expander.

We note that in view of this result Theorem 2.1 implies that every
space containing an expander has infinite asymptotic dimension.

We present Higson’s argument here.

Proof. Let dim X = m and let {Vn} be an expander that lies in X. By
Hadamard theorem the exponent expx : Tx → X is a diffeomorphism
for every x ∈ X. We note that the inverse map logx : X → Tx = Rm is
1-Lipschitz.

First we show that for every n there is a point yn such that∑
x∈Vn

logyn
(x) = 0.

Assume the contrary wy =
∑

x∈Vn
logy(x) 6= 0 for all y ∈ X. Then

the vector −wy defines a point sy ∈ S(∞) in the visual sphere at
infinity S(∞) of a manifold X. It is not difficult to check that the
correspondence y → sy defines a continuous map f : X → S(∞) which
is a retraction of the topological m-ball X ∪ S(∞) to its boundary.
This is a contradiction.

We take K as in Corollary 3.4. Then

|(logyn
)−1(BK(0)) ∩ Vn| >

|Vn|
2

.

Since (logyn
)−1(BK(0)) = expyn

(BK(0)) = BX
K (yn), where the latter is

the K-ball in X, we have an estimate

2d2K ≥ 1+d+· · ·+d2K ≥ |BVn
2K(v)| = |BX

2K(v)∩Vn| ≥ |BX
K (yn)∩Vn| >

|Vn|
2

for any v ∈ BX
K (yn)∩Vn. This gives a contradiction with |Vn| → ∞. �

In conclusion we note that the Novikov Conjecture holds true for
this Gromov’s group.

Another remark is that the Higson corona of an expander, considered
metrically as a garland of finite graphs attached to a half-line, might
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produce by means of factorization dimensionally exotic metric com-
pacta. It could give a clue to some long standing problems in infinite
dimensional dimension theory.
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