PROBLEM SESSION

1. Lawrence Brenton

- (a) Let X be the cone on a homology 3-sphere M. Does there exist a Lorentzian metric g on X that is homogeneous on cross sections such that (X, g) satisfies the dominant energy condition?
- (b) If "no," where does the obstruction lie?
- (c) Will the spacetimes of part (a) always recollapse in a "big crunch," or does this depend on the choice of metric?

2. Robert Daverman

- (a) If X is a compact ANR homology 3-manifold, does there exist a real 3-manifold M such that M is homotopy equivalent to X?
- (b) If so, does X embed in $M \times \mathbb{R}$?
- (c) If so, is $X \times \mathbb{R} \cong M \times \mathbb{R}$?

3. David Wright

Are there examples of compact 3-manifolds (or n-manifolds) in which every homeomorphism is isotopic to the identity?

4. Tadek Dobrowolski

Let X be a contractible, locally contractible compact metric space. Does X have the fixed point property?

The answer is known to be "yes" if there exists a function λ : $X \times X \times [0,1] \to X$ such that

$$\begin{split} \lambda(x,y,0) &= x, \\ \lambda(x,y,1) &= y, \text{and} \\ \lambda(x,x,t) &= x \text{ for } 0 \leq t \leq 1. \end{split}$$

Every AR has such a function.

5. Steve Ferry

Is there a sequence of Riemannian manifolds, sharing a fixed contractibility function, that approach (in Gromov-Hausdorff space) an infinite dimensional space with a bound on volume? Definitions: A *contractibility function* on M is a function ρ : $(0, \infty) \rightarrow (0, \infty)$ such that for every t > 0 and for every $x \in M$

PROBLEM SESSION

the ball of radius t in M centered at x is contractible in the ball of radius $\rho(t)$. If X and Y are compact metric spaces, the Gromov-Hausdorff distance $d_{\text{GH}}(X, Y)$ is defined by

$$d_{\rm GH}(X,Y) = \inf \left\{ d^Z(X,Y) \mid Z^{\rm metric \ space} \supset X,Y \right\},\$$

where d^Z is the usual Hausdorff distance between subcompacta of Z.

6. Craig Guilbault

Given a homomorphism $\mu : G \to \pi_1(M)$, with G a finitely generated group and M a closed manifold, such that ker(μ) is perfect, does there exist a 1-sided *h*-cobordism that realizes μ ? In other words, does there exist a triple (W, M, M^*) of manifolds such that $\partial W = M \sqcup M^*$, $M \hookrightarrow W$ is a homotopy equivalence, and

$$\pi_1(M^*) \longrightarrow \pi_1(W)$$

$$\approx \uparrow \qquad \uparrow \approx$$

$$G \xrightarrow{\mu} \pi_1(M)$$

commutes? [This is the reverse of Quillen's +-construction.]

7. Sasha Dranishnikov

- (a) Is $\operatorname{asdim}(X) = \dim(\nu X)$?
- (b) If Γ is a CAT(0) group, is $\operatorname{asdim}(\Gamma) < \infty$?
- (c) For $n \ge 2$, does there exist a Coxeter group Γ such that $\operatorname{vcd}_{\mathbb{Q}} \Gamma = 2$ and $\operatorname{vcd}_{\mathbb{Z}} \Gamma = n$?

60