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Abstract. This is a summary of research which appears in a preprint

of the same title. We prove a K-resolution theorem for simply con-
nected CW-complexes K in extension theory in the class of metriz-

able compacta X. This means that if dim X ≤ K (in the sense of ex-

tension theory), n is the first element of N such that G = πn(K) 6= 0,
and it is also true that πn+1(K) = 0, then there exists a metrizable

compactum Z and a surjective map π : Z → X such that:

(a) π is G-acyclic,

(b) dim Z ≤ n + 1, and

(c) dim Z ≤ K.

If additionally, πn+2(K) = 0, then we may improve (a) to the state-

ment,

(aa) π is K-acyclic.

To say that a map π is K-acyclic means that each map of each fiber
π−1(x) to K is nullhomotopic.

In case πn+1(K) 6= 0, we obtain a resolution theorem with a

weaker outcome. Nevertheless, it implies the G-resolution theorem
for arbitrary abelian groups G in cohomological dimension dimG X ≤
n when n ≥ 2.

The Edwards-Walsh resolution theorem, the first resolution theo-
rem for cohomological dimension, was proved in [Wa] (see also [Ed]).
It states that if X is a metrizable compactum and dimZ X ≤ n (n ≥ 0),
then there exists a metrizable compactum Z with dim Z ≤ n and a
surjective cell-like map π : Z → X. This result, in conjunction with
Dranishnikov’s work ([Dr1]) showing that in the class of metrizable
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compacta, dimZ is distinct from dim, was a key ingredient for proving
that cell-like maps could raise dimension (see [Ru1] for background).
For the reader seeking fundamentals on the theory of cohomological
dimension, dimG, the references [Ku], [Dr3], [Dy], and [Sh] could be
helpful.

Now a map is cell-like provided that each of its fibers is cell-like,
or, equivalently, has the shape of a point ([MS1]). Every cell-like
compactum has trivial reduced Čech cohomology with respect to any
abelian group G. This means that for every abelian group G, every
cell-like map is G-acyclic, i.e., all its fibers have trivial reduced Čech
cohomology with respect to the group G. This is equivalent to the
statement that every map of such a fiber to K(G, n) is nullhomotopic.

The latter notion may be generalized as follows. For a given CW-
complex K, a metrizable compactum X is called K-acyclic if every
map of it to K is nullhomotopic. Moreover, one should recall that
when a Hausdorff compactum or metrizable space X has dim X ≤ n,
then also dimZ X ≤ n.

With these ideas in mind, one may ask, what kind of parallel reso-
lution theorems can be obtained under the assumption that dimG X ≤
n, where G is an abelian group different from Z? It turns out that it
is not possible always to have cell-like resolutions as in the Edwards-
Walsh theorem, nor can one even require in such propositions that
dim Z ≤ n be true (see [KY2]). So, what kind of resolution theorems
can we expect? The main results of this paper go as follows.

1.1. Theorem. Let K be a simply-connected CW-complex, n be the
first element of N such that G = πn(K) 6= 0, and X be a metrizable
compactum with dim X ≤ K. Then there exists a metrizable com-
pactum Z and a surjective map π : Z → X such that:

(a) π is G-acyclic,
(b) dim Z ≤ n + 1, and
(c) dimG Z ≤ n.

1.2. Theorem. Let K be a simply-connected CW-complex, n be
the first element of N such that G = πn(K) 6= 0, and assume that
πn+1(K) = 0. Then for each metrizable compactum X with dim X ≤
K, there exists a metrizable compactum Z and a surjective map π :
Z → X such that:

(a) π is G-acyclic,
(b) dim Z ≤ n + 1, and
(c) dimZ ≤ K.
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If in addition, πn+2(K) = 0, then we may also conclude that
(aa) π is K-acyclic.

If K = K(G, n), then dim X ≤ K is equivalent to dimG X ≤ n.
Hence, as a corollary to Theorem 1.1, we get the G-acyclic resolution
theorem in cohomological dimension theory.

1.3. Corollary. Let G be an abelian group and X be a metrizable
compactum with dimG X ≤ n (n ≥ 2). Then there exists a metrizable
compactum Z and a surjective map π : Z → X such that:

(a) π is G-acyclic,
(b) dim Z ≤ n + 1, and
(c) dimG Z ≤ n.

In [Le] one finds another approach to 1.3. We mention that the
Edwards-Walsh theorem has been generalized to the class of arbitrary
metrizable spaces by Rubin and Schapiro ([RS]) and to the class of
arbitrary compact Hausdorff spaces by Mardešić and Rubin ([MR]).
Corollary 1.3 was proved by Dranishnikov ([Dr2]) for the group G =
Z/p, where p is an arbitrary prime number, but with the stronger
outcome that dim Z ≤ n. Later, Koyama and Yokoi ([KY1]) were able
to obtain this Z/p-resolution theorem of Dranishnikov both for the
class of metrizable spaces and for that of compact Hausdorff spaces.

In their work [KY2], Koyama and Yokoi have made a substantial
amount of progress in the resolution theory of metrizable compacta,
that is, towards proving Corollary 1.3. Their method relies heavily on
the existence of Edwards-Walsh resolutions, which had been studied
by Dydak and Walsh in [DW], and which had been applied originally,
in a rudimentary form, in [Wa]. The definition of an Edwards-Walsh
resolution can be found in [KY2], but we shall not use it herein.

To overcome a flaw in the proof of Lemma 4.4 of [DW], Koyama
and Yokoi proved the existence of Edwards-Walsh resolutions for some
groups G, but under a stronger set of assumptions on G than had been
thought necessary in [DW]. It is still not known if these stronger as-
sumptions are needed to insure the existence of the resolutions. Nev-
ertheless, Koyama and Yokoi were able to prove substantial G-acyclic
resolution theorems. Let us state two of the important theorems from
[KY2] (Theorems 4.9 and 4.12, respectively), which greatly influenced
the direction of the work in this paper.

1.4. Theorem. Corollary 1.3 is true for every torsion free abelian
group G.
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1.5. Theorem. Let G be an arbitrary abelian group and X be a
metrizable compactum with dimG X ≤ n, n ≥ 2. Then there exists a
surjective G-acyclic map π : Z → X from a metrizable compactum Z
where dim Z ≤ n + 2 and dimG Z ≤ n + 1.

In case G is a torsion group, they prove (Theorem 4.11) that Corol-
lary 1.3 holds, but without part (c). Of course Theorem 1.5 falls short
of Corollary 1.3. We observed that one of the main reasons for the rel-
ative weakness of this theorem was that Koyama and Yokoi proved it
by an indirect technique, a type of “finesse.” Their approach depends
heavily on the Bockstein basis theorem and the Bockstein inequalities
(see [Ku]), instead of the more direct method, involving Edwards-
Walsh resolutions, used to prove Theorem 1.4.

We want to point out that Theorem 1.4 includes as a corollary, and
therefore redeems, the Q-resolution theorem of Dranishnikov ([Dr5]–
but see also [Dr6] where a different proof is given). The Koyama
and Yokoi proof shows that in the proof of Theorem 3.2 of [Dr5], the
statement that αm ◦ωm is an Edwards-Walsh resolution over τ

(n+1)
m is

not true. This was a subtle point; to fully understand it, the interested
reader may examine the text immediately following the proof of Fact
1 of the proof of Theorem 3.1 in [KY2]. Getting around the barrier
naturally led to a quite complicated construction.

Our proof of Theorems 1.1 and 1.2 will be direct, using extensions
which are different from Edwards-Walsh resolutions. But we will use
a type of pseudo-Bockstein basis denoted σ0(G) (section 9). This will
allow us to deal with the groups Z/p∞ as well as the other groups
involved. We shall employ the technique of inverse sequences both to
represent our given space X and to determine the resolving space Z.
The map π : Z → X will be obtained in a standard, yet complicated
manner similar to that used in [Wa].
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