PERFECT SUBGROUPS OF HNN EXTENSIONS

F. C. TINSLEY (JOINT WITH CRAIG R. GUILBAULT)

Introduction

This note includes supporting material for Guilbault's one-hour talk summarized elsewhere in these proceedings. We supply the group theory necessary to argue that Guilbault's tame ends cannot be pseudocollared. In particular, we show that certain groups (the interated Baumslag-Solitar groups) cannot have any non-trivial perfect subgroups. The absence of non-trivial perfect subgroups, in turn, eliminates the possibility of non-trivial homotopy equivalences.

In contrast, we include an example of a pseudo-collared end based on groups (the interated Adam's groups) that are somewhat similar to the Baumslag-Solitar groups. We close with a discussion of a homotopy theoretic approach to this construction.

1. The Groups

We use the following standard notation. We let $x^{g}=g^{-1} x g$ or the conjugation of x by g, and let $[s, t]=s^{-1} t^{-1}$ st or the commutator of s and t. Let S be a subset of elements of a group N. We denote by $\left\langle s_{1}, s_{2}, \cdots ; N\right\rangle$ the subgroup of N generated by S where $S=\left\{s_{1}, s_{2}, \cdots\right\}$. If N is omitted, then $\left\langle s_{1}, s_{2}, \cdots\right\rangle$ is the free group generated by the characters s_{1}, s_{2}, \cdots. If S and N are as above, then we denote by $n c l\left\{s_{1}, s_{2}, \cdots ; N\right\}$ the normal closure of S in N or the smallest normal subgroup of N containing S.

A group N is perfect if it is equal to its commutator subgroup. Symbolically, $N=[N, N]=N^{(1)}$. Equivalently, N is equal to the transfinite intersection of its derived series.

The construction of the pseudo-collared end is based on the onerelator group, Adam's group:

$$
A_{1}=\left\langle a_{1}, a_{0} \mid a_{1}^{2}=a_{1}^{\left(a_{1}^{a_{0}}\right)}\right\rangle
$$

We can repeat this pattern to obtain the iterated Adam's groups, A_{k}, $1 \leq k<\infty$:

$$
\left\langle a_{0}, a_{1}, \cdots, a_{k} \mid a_{1}^{2}=a_{1}^{\left(a_{1}^{a_{0}}\right)}, \underset{53}{a_{2}^{2}}=a_{2}^{\left(a_{2}^{a_{1}}\right)}, \cdots, a_{k}^{2}=a_{k}^{\left(a_{k}^{a_{k-1}}\right)}\right\rangle
$$

For each $i \geq 1, a_{i}$ is a commutator $a_{i}=\left[a_{i}, a_{i}^{a_{i-1}}\right]$.
Guilbault constructs the tame end that is not pseudo-collared using the simplest Baumslag-Solitar group:

$$
\begin{aligned}
B_{1} & =\left\langle b_{1}, b_{0} \mid b_{1}^{2}=b_{0}^{-1} b_{1} b_{0}\right\rangle \\
& =\left\langle b_{1}, b_{0} \mid b_{1}^{2}=b_{1}^{b_{0}}\right\rangle
\end{aligned}
$$

Again, we can iterate to obtain the group, B_{k} :

$$
\left\langle b_{0}, b_{1}, \cdots, b_{k} \mid b_{1}^{2}=b_{1}^{b_{0}}, b_{2}^{2}=b_{2}^{b_{1}}, \ldots, b_{k}^{2}=b_{k}^{b_{k-1}}\right\rangle
$$

For each $i \geq 1, b_{i}$ is a commutator $b_{i}=\left[b_{i}, b_{i-1}\right]$.

2. HNN Extensions

The iterations above are each of a more general form. Given $L<K$ and $\psi: L \xrightarrow{1: 1} K$, we define the $H N N$ extension N

$$
\left.\langle\operatorname{gen}(K), t| \operatorname{rel}(K), \psi(l)=t^{-1} l t \text { for } l \in L\right\rangle .
$$

The extension is split if there is a retraction $r: K \rightarrow L$. The following are well-known for HNN-extensions.

Facts:

(1) K is a natural subgroup of N.
(2) N naturally retracts onto $\langle t\rangle \cong \mathbb{Z}$, called the free part of N. The kernel of the retraction is $n c l\{\{K\} ; N\}$.
We also use the following well-known result about the structure of subgroups of HNN extensions:

Theorem 1 (see [KS], Theorem 6). Let N be the HNN group above. If H is a subgroup of N that has trivial intersection with each of the conjugates of L, then H is the free product of a free group with the intersections of H with certain conjugates of K.

3. The main theorem

First, we list some basic propositions that easily follow from the definitions:

Proposition 1. If N and H are any groups, $\phi: N \rightarrow H$ is a homomorphism, and $P<N$ is perfect, then $\phi(P)$ is perfect.

First, a similarity between A and B :
Proposition 2. For $G=A, G=B$, and each $k \geq 1$, there is a surjection

$$
\gamma_{k}: G_{k} \xrightarrow[g_{k}=1]{\longrightarrow} G_{k-1}
$$

Then, two important distinctions between A and B.
Proposition 3. The subgroup, $n c l\left\{a_{1} ; A_{1}\right\}$, of A_{1} is perfect. Moreover, the subgroup, ncl $\left\{a_{1}, ; A_{k}\right\}$ of A_{k} is perfect.

And, now the crucial negative result for B_{j} :
Theorem 2. For $j \geq 0$, the iterated Baumslag-Solitar group B_{j} has no non-trivial perfect subgroups.

Proof. We induct on j. The cases $(j=0)$ and $(j=1)$ are handled separately. For $j=0, B_{0}$ is abelian. For $j=1$, we observe that B_{1} is one of the well-known Baumslag-Solitar groups for which the kernel of the map $\psi_{1}: B_{1} \rightarrow B_{0}$ is abelian. Then, we apply the argument used for the case $j=2$.

$$
\begin{aligned}
(j & \geq 2) \text { Let } \\
B_{j} & =\left\langle b_{0}, b_{1}, \cdots, b_{j} \mid b_{1}^{2}=b_{0}^{-1} b_{1} b_{0}, b_{2}^{2}=b_{1}^{-1} b_{2} b_{1}, \cdots, b_{j}^{2}=b_{j-1}^{-1} b_{j} b_{j-1}\right\rangle
\end{aligned}
$$

Now, B_{j} now can be put in the form of the HNN group. In particular, $B_{j}=\left\langle\operatorname{gen}(K), t_{1} \mid \operatorname{rel}(K), R_{1}\right\rangle$ where

$$
K=\left\langle b_{1}, b_{2}, \cdots, b_{j} \mid b_{2}^{2}=b_{1}^{-1} b_{2} b_{1}, \cdots, b_{j}^{2}=b_{j-1}^{-1} b_{j} b_{j-1}\right\rangle,
$$

$t_{1}=b_{0}, L_{1}=\left\{b_{1} ; B_{j}\right\}, \phi_{1}\left(b_{1}\right)=b_{1}^{2}$, and R_{1} is given by $b_{1}^{2}=b_{0}^{-1} b_{1} b_{0}$. The base group, K, obviously is isomorphic to B_{j-1} with that isomorphism taking b_{i} to b_{i-1} for $1 \leq i \leq j-1$. Define $\psi_{j}: B_{j} \rightarrow B_{j-1}$ by adding the relation $b_{j}=1$ to the group B_{j}. By inspection ψ_{j} is a surjective homomorphism. We assume that B_{i} contains no non-trivial perfect subgroups for $i \leq j-1$ and prove that B_{j} has this same property. To this end, let P be a perfect subgroup of B_{j}. Then, $\psi_{j}(P)$ is a perfect subgroup of B_{j-1}. By induction, $\psi_{j}(P)=1$. Thus, $P \subset \operatorname{ker}\left(\psi_{j}\right)$. By the inductive hypothesis, K has no perfect subgroups. Moreover, $b_{1} \in K$ still has infinite order in both K (by induction) and B_{j} (since K embeds in B_{j}). Moreover, the HNN group, B_{j}, has the single associated cyclic subgroup, $L=<b_{1} ; B_{j}>$, with conjugation relation $b_{1}^{2}=b_{0}^{-1} b_{1} b_{0}$. Recall that $\psi_{j}: B_{j} \rightarrow B_{j-1}$ is defined by adding the relation $b_{j}=1$ to B_{j}. Thus, $\operatorname{ker}\left(\psi_{j}\right)=\operatorname{ncl}\left\{b_{j} ; B_{j}\right\}$.

Claim. No conjugate of L non-trivially intersects $H=n c l\left\{b_{j} ; B_{j}\right\}$
Proof of Claim: If the claim is false, then L itself must non-trivially intersect the normal subgroup, $n c l\left\{b_{j} ; B_{j}\right\}$. This means that $b_{1}^{m} \in$ $n c l\left\{b_{j} ; B_{j}\right\}=\operatorname{ker}\left(\psi_{j}\right)$ for some integer $m>0$. Since $j \geq 2$, then $\psi_{j}\left(b_{1}^{m}\right)=\psi_{j}\left(b_{1}\right)^{m}=b_{1}^{m}=1$ in B_{j-1}, ie, b_{1} has finite order in B_{j-1}. This contradicts our observations above.

We continue with the proof of Theorem 2. Recall that P is a perfect subgroup of $\operatorname{ker}\left(\psi_{j}\right)$. It must also enjoy the property of trivial intersection with each conjugate of L. We now apply Theorem 1 to the subgroup P to conclude that P is a free product where each factor is either free or equal to $P \cap g^{-1} K g$ for some $g \in B_{j}$. Now, P projects naturally onto each of these factors so each factor is perfect. However, non-trivial free groups are not perfect. Moreover, by induction, K (or equivalently $g^{-1} \mathrm{Kg}$) contains no non-trivial perfect subgroups. Thus, any subgroup, $P \cap g^{-1} K g$, is trivial. Consequently, P must be trivial. This completes the proof of Theorem 2.

4. Geometry and homotopy theory

We begin this section by emphasizing the similarities between A and B. We let G stand for either A or B, g stand respectively for either a or b, and $w\left(g_{j}\right)$ stand respectively for either $g_{j}^{g_{j-1}}$ or g_{j-1}. Then,

$$
G_{k}=\left\langle g_{0}, g_{1}, \cdots, g_{k} \mid g_{1}^{2}=g_{1}^{w\left(g_{1}\right)}, g_{2}^{2}=g_{2}^{w\left(g_{2}\right)}, \vdots, g_{k}^{2}=g_{k}^{w\left(g_{k}\right)}\right\rangle
$$

represents either A_{k} or B_{k}. For each $i \geq 1, g_{i}$ is a commutator $g_{i}=$ $\left[g_{i}, w\left(g_{i}\right)\right]$. We can summarize the relationship as follows:

SIMILARITES AND DIFFERENCES (G equals A or B)

Properties	Adam's	Baum.- Solitar
1 Relator Group	$\sqrt{ }$	$\sqrt{ }$
$G^{(1)}=n c l\left(g_{1} ; G\right)$	$\sqrt{ }$	$\sqrt{ }$
Perfect $G^{(1)}$	$\sqrt{ }$	\times
Abelian $G^{(1)}$	\times	$\sqrt{ }$
Abelianizes to \mathbb{Z}	$\sqrt{ }$	$\sqrt{ }$
$\mathbb{Z} \xrightarrow[\text { split }]{H N N} \xrightarrow[\text { split }]{H} G$	$\sqrt{ }$	$\sqrt{ }$

Moreover, g_{k} is the commutator of itself with another element, $g=$ $w\left(g_{k}\right)$, of G_{k}. So, if G_{k} is the fundamental group of a high-dimensional manifold, M_{k}, then g_{k} bounds a disk with one handle in M_{k} where one of the handle curves is homotopic (rel basepoint) to g_{k}. We let this be the meridianal handle curve:

We can attach a two handle to M_{k} along g_{k}. Then, the disk with handle and three copies of the core of the two handle form a 2 -sphere, S_{k}^{2}, along which a three handle can be attached.

Note that this S_{k}^{2} will algebraically cancel the 2-disk since it will be attached twice with one sign and once with the opposite sign. As a result the manifold, N_{k}, resulting from attaching these two handles

Figure 1

to M_{k}, will have the same homology as M_{k}. In fact, we obtain a cobordism, $\left(W_{k}, M_{k}, N_{k}\right)$, where the inclusion $N_{k} \rightarrow W_{k}$ induces an equivalence of homology groups.

This inclusion also induces an isomorphism on fundamental groups: $\pi_{1}\left(N_{k}\right) \xrightarrow{\cong} \pi_{1}\left(W_{k}\right) \cong G_{k-1}$. One might conclude that $N_{k} \rightarrow W_{k}$ induces a homotopy equivalence. However, this is the case only for Adams group.

The Hurewicz Theorem is needed to argue from data about homology to conclusions about homotopy. It requires simply connected spaces. Thus, we must pass to the universal covers, \widetilde{W}_{k} and \widetilde{N}_{k}, of the manifolds, W_{k} and N_{k} and the cover, \widehat{M}_{k}, of the manifold, M_{k}, that corresponds to the π_{1}-kernel of the induced map, $\pi_{1}\left(M_{k}\right) \rightarrow \pi_{1}\left(W_{k}\right)$.

The key becomes the longitudinal curve, g, on the disk-with-handle (shown below in bold).

It is quite different for the A_{k} and B_{k}. For Adams group, $g=$ $a_{i}^{a_{i-1}}=a_{i-1}^{-1} a_{i} a_{i-1}$ while for the Baumslag-Solitar group, $g=a_{i-1}$. In

Figure 3
the first case, the element, $g=a_{i-1}^{-1} a_{i} a_{i-1}$, is a conjugate of a_{i}, and, in particular, lifts as a loop to \hat{M}. Consequently, the same cancellation in homology occurs in the universal cover as in the space itself and, thus, homology equivalences will yield a homotopy equivalence. In the second case, the conjugating element, b_{i-1}, lifts as an arc to \hat{M}. Thus, the two copies of the core of the 2-handle that cancelled as elements of $H_{2}(W, M)$ represent distinct generators of $H_{2}(\tilde{W}, \hat{M})$ that have different signs but, in fact, do not cancel.

REFERENCES

[1] A. Karrass and D. Solitar, Subgroups of HNN groups and groups with one defining relator, Canad. J. Math. 23 (1971), 627-643.

Department of Mathematics, Colorado College, Colorado Springs, CO 80903-3294 USA

E-mail address: FTinsley@ColoradoCollege.edu

