Immersed turnovers in hyperbolic 3-orbifolds

Shawn Rafalski
University of Illinois at Chicago

Abstract

A hyperbolic turnover is a 2-orbifold isometric to the double of a hyperbolic triangle whose interior angles are integer submultiples of π. In this talk, I will show that if a hyperbolic 3 -orbifold Q contains an immersed (but non-embedded) hyperbolic turnover T, then Q contains a hyperbolic 3 -suborbifold Q^{\prime} which contains T, with $\operatorname{Vol}\left(Q^{\prime}\right)<6 / 5 *$ Area (T). Furthermore, I will show that for a given turnover type, there are only finitely many possibilities for such a "turnover core" Q^{\prime}.

