Finite dimensionality of Z-boundaries and its consequences

Molly Moran University of Wisconsin–Milwaukee

Abstract. The rich study of boundaries of CAT(0) and hyperbolic groups led M. Bestvina to formalize the concept of a group boundary by defining a \mathbb{Z} -structure on a group. In his original definition, a \mathbb{Z} -structure on a group G is a pair of spaces (\hat{X}, Z) where \hat{X} is a compact ER, Z is a \mathbb{Z} -set in \hat{X} , G acts freely, cocompactly, and properly on $X = \hat{X} - Z$ and the collection of G-translates of a compact set in X forms a null sequence in \hat{X} . In this setting, Z is finite dimensional. We show that this result can be extended to the case that \hat{X} is an AR, that is when \hat{X} need not be finite dimensional. We also explore results that can be obtained by knowing the \mathbb{Z} -boundary is finite dimensional.